Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural metabolite can suppress inflammation

01.07.2016

An international group of scientists from US, Canada, Germany and Russia has revealed a substance produced in humans that can suppress the pro-inflammatory activity of macrophages - specific cells of immune system. The substance known as itaconate is released in large quantities by macrophages themselves, but until now its role remained poorly studied.

Now scientists have found evidence that itaconate acts as an antioxidant and anti-inflammatory agent. These properties make itaconate promising for the treatment of pathologies caused by excessive inflammation or oxidative stress. Such conditions may be associated with cardiac ischemia, metabolic disorders and perhaps autoimmune diseases. The findings were published in Cell Metabolism.


The was image inspired by draw-bridges of Saint Petersburg depicts Itaconate disrupting the TCA cycle flow.

Credit: © Aleksandra Ziminova

The work, which united scientists from Washington University in St. Louis, ITMO University, McGill University and Max Planck Institute of Immunobiology and Epigenetics, was based on the study of macrophages - immune system cells in charge of fighting pathogens.

An important feature of macrophages is their ability to switch between different states depending on the concentration of various substances in the body. In total, there are three such states: M0 - neutral, M1 - pro-inflammatory and M2 anti-inflammatory.

M1 macrophages are the first who arrive to fight the infection. As they begin to swallow viruses and bacteria, an intense inflammatory process kicks in. This process may adversely affect the entire organism if the macrophages become overly diligent.

Inflammation consumes energy resources of the organism and can lead to numerous complications or even death. That is why in order to mitigate the negative consequences of immune response, it is important to understand how we can reduce the excessive proinflammatory effect of macrophages.

An in-depth study of macrophage metabolism during their transition from inactive to proinflammatory state helped researchers identify the substance that could suppress macrophage-related inflammations. Describing the working mechanism of this substance called itaconate became possible due to a complex map of metabolic pathways in macrophages that was developed by the group.

Itaconate is produced by macrophages when they switch from M0 inactive state to M1 pro-inflammatory state. If the concentration of this substance increases to defined limit, macrophage activation falls. "Itaconate sets the bar controlling M1 macrophage formation," says Alexey Sergushichev, one of the authors of the paper and PhD student at ITMO University.

"Without this substance, the inflammation would increase more than required. In the future, with the help of itaconate, it will be possible to artificially manipulate the transition of macrophages from M0 to M1, meaning the possibility of restraining inflammations. The influence of itaconate on macrophages is a delicate mechanism that can ensure high selectivity of the immune system regulation."

Prior to the study, guesswork with respect to the function and origin of itaconate generated a lot of speculations. But the new study shows that itaconate plays the role of immune regulator. To understand how itaconate reduces the activity of immune cells, the researchers examined the so-called Krebs cycle, or tricarboxylic acid cycle and cellular respiration (processes of producing of vital substances and energy from the oxidation of glucose in cells). Having done so, the scientists identified two "bottlenecks" that can be influenced to reverse the reaction and send it another way.

The Krebs cycle is preceded by signal transmission between cells through oxygen-sensitive pathways. Itaconate blocks the enzyme called Sdh (succinate dehydrogenase), which not only ensures the functioning of the tricarboxylic acid cycle but also links the cycle to cellular respiration and signaling pathways.

Thus, itaconate acts on both functions of the Sdh enzyme, adjusting the cells' Krebs cycle and respiration. When the enzyme is blocked in macrophages, both processes become interrupted, and this impairs the cells' activation. "Noteworthy, itaconate acts as an anti-oxidant and anti-inflammatory agent," says Vicky Lampropoulou, the lead author of the paper and researcher at the laboratory of Maxim Artyomov at Washington University in St. Louis. "At the same time, itaconate is naturally produced by mammalian immune cells. These features make it attractive for use in adjuvant therapy for numerous diseases, in which excessive inflammation and oxidative stress associate with pathology, like heart ischemia, metabolic disorders and perhaps even autoimmunity."

The researchers have already demonstrated that they can use itaconate to reach the desired effect in living organisms. Experiments with mice have shown that the substance reduces damage after heart attack, acting by the same mechanism of locking the Sdh enzyme. However, according to the scientists, more work is needed to successfully apply the method to humans.

Media Contact

Dmitry Malkov
dvmalkov@corp.ifmo.ru
7-953-377-5508

 @spbifmo_en

http://en.ifmo.ru/ 

Dmitry Malkov | EurekAlert!

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>