Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural killer cells have a memory

08.06.2016

Researchers at the University of Bonn and the Ludwig-Maximilians-Universität of Munich have decoded a new mechanism of how the immune system can specifically attack pigmented cells of the skin. It was previously believed that natural killer cells did not have an immunological memory for the body's own tissues. However, the scientists have now showed that these immune cells can indeed “remember” pigmented cells when they come into more frequent contact with a specific contact allergen. These results may provide new insights into the development of the disease vitiligo and may also offer new options for the treatment of malignant melanoma. These results have now been published in “Immunity”.

Pigmented cells of the skin are crucial as a protective shield against UV-radiation. An often-desired suntan can only form with the aid of the enzyme tyrosinase inside these pigmented cells. The more exposure to sunshine, the more pigments are formed by this enzyme.


Dr. Jasper van den Boorn, Prof. Dr. Gunther Hartmann and Prof. Dr. Veit Hornung in the lab of the Institute of Clinical Chemistry and Clinical Pharmacology at the University Hospital Bonn.

© Photo: Rolf Müller/Ukom UKB

The compound monobenzone can specifically block tyrosinase and thereby trigger a stress reaction. As a result, the immune system attacks the affected pigmented cells. A frequent consequence is vitiligo, which leads to milky-white unpigmented areas on the skin.

Scientific studies have shown that people with vitiligo are at lower risk of developing malignant melanoma. A possible method for treating this type of cancer could involve actively triggering vitiligo with the tyrosinase blocker monobenzone.

“The idea is to use a less severe disease as a weapon against malignant melanoma,” says Dr. Jasper van den Boorn from the Institute of Clinical Chemistry and Clinical Pharmacology of the University of Bonn, who previously researched this connection in his doctoral thesis at the University of Amsterdam and demonstrated the fundamental feasibility of this option.

Contact allergen must first be “activated”

“However, the initial mechanism by which the immune system identifies the monobenzone-exposed pigmented cells as dangerous, before attacking them, has been unclear so far," reports Prof. Dr. Veit Hornung, who recently moved from the University of Bonn to the Ludwig-Maximilians-Universität in Munich.

It is known that monobenzone has a contact-sensitizing effect on pigmented skin: In principle, this substance alone is inactive. Only when monobenzone docks onto the tyrosinase enzyme, a so-called hapten is generated in the pigmented cell. This is a newly formed “foreign structure” that can specifically activate the immune system. By applying low doses of monobenzone several times in succession on the rodents' skin the researchers explored this path in detail on mice.

The way in which the animals' immune defense reacted to this hapten amazed the researchers. “Normally the immune system mobilizes a mixture of various white blood cells to attack hapten-exposed tissues,” reports Dr. van den Boorn. “However, the multiple monobenzone exposures induced only natural killer cells to recognize and attack the pigmented cells." Natural killer cells are part of the innate immune system and kill abnormal cells - such as cancer cells or virus-infected cells. Previously, scientists believed that they did not have the capacity to remember and specifically attack the body's own tissues. Up to now, this phenomenon has only been attributed to T and B lymphocytes.

“However, our results clearly show that natural killer cells can also carry out a long-lasting and effective immune reaction against the body's own pigmented cells, including malignant melanoma cells,” says Prof. Dr. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology of the University of Bonn. The researchers established this by studying mice that were not able to form any functional T and B lymphocytes. Nonetheless, white spots still developed in the animals' fur, and previously transferred malignant melanoma cells were destroyed, because the mice’s natural killer cells remembered and attacked the pigmented cells.

The NLRP3 inflammasome serves as a checkpoint

In order for this immune response to occur, an immune-checkpoint had to give the green light first: the NLRP3 inflammasome. “This is a protein complex that integrates multiple pieces of signaling information in macrophages, special phagocytes that reside in tissues. Once switched on, macrophages then decide whether immune cells including natural killer cells receive their marching orders,” explains Prof. Dr. Veit Hornung. If the researchers incapacitated this checkpoint, the monobenzone-induced tyrosinase hapten did not trigger the desired immune reaction anymore.

The results may open up new therapeutic avenues for the treatment of malignant melanoma, demonstrate a new type of immune recognition and could even shed new light onto the incipient events causing the development of vitiligo.

Publication: Jasper G. van den Boorn, Christopher Jakobs, Christian Hagen, Marcel Renn, Rosalie M. Luiten, Cornelis J.M. Melief, Thomas Tüting, Natalio Garbi, Gunther Hartmann & Veit Hornung: Inflammasome-dependent induction of adaptive NK cell memory, Immunity, DOI: 10.1016/j.immuni.2016.05.008

Media contact information:

Dr. Jasper van den Boorn
Institute of Clinical Chemistry and Clinical Pharmacology
University of Bonn Hospital
Tel. ++49-228-28751143
E-Mail: jvdboorn@uni-bonn.de

Prof. Dr. Veit Hornung
Gene Center and Department of Biochemistry
Ludwig Maximilian University of Munich
Tel. ++49-89-2180711110
Email: hornung@genzentrum.lmu.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>