Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural killer cells have a memory

08.06.2016

Researchers at the University of Bonn and the Ludwig-Maximilians-Universität of Munich have decoded a new mechanism of how the immune system can specifically attack pigmented cells of the skin. It was previously believed that natural killer cells did not have an immunological memory for the body's own tissues. However, the scientists have now showed that these immune cells can indeed “remember” pigmented cells when they come into more frequent contact with a specific contact allergen. These results may provide new insights into the development of the disease vitiligo and may also offer new options for the treatment of malignant melanoma. These results have now been published in “Immunity”.

Pigmented cells of the skin are crucial as a protective shield against UV-radiation. An often-desired suntan can only form with the aid of the enzyme tyrosinase inside these pigmented cells. The more exposure to sunshine, the more pigments are formed by this enzyme.


Dr. Jasper van den Boorn, Prof. Dr. Gunther Hartmann and Prof. Dr. Veit Hornung in the lab of the Institute of Clinical Chemistry and Clinical Pharmacology at the University Hospital Bonn.

© Photo: Rolf Müller/Ukom UKB

The compound monobenzone can specifically block tyrosinase and thereby trigger a stress reaction. As a result, the immune system attacks the affected pigmented cells. A frequent consequence is vitiligo, which leads to milky-white unpigmented areas on the skin.

Scientific studies have shown that people with vitiligo are at lower risk of developing malignant melanoma. A possible method for treating this type of cancer could involve actively triggering vitiligo with the tyrosinase blocker monobenzone.

“The idea is to use a less severe disease as a weapon against malignant melanoma,” says Dr. Jasper van den Boorn from the Institute of Clinical Chemistry and Clinical Pharmacology of the University of Bonn, who previously researched this connection in his doctoral thesis at the University of Amsterdam and demonstrated the fundamental feasibility of this option.

Contact allergen must first be “activated”

“However, the initial mechanism by which the immune system identifies the monobenzone-exposed pigmented cells as dangerous, before attacking them, has been unclear so far," reports Prof. Dr. Veit Hornung, who recently moved from the University of Bonn to the Ludwig-Maximilians-Universität in Munich.

It is known that monobenzone has a contact-sensitizing effect on pigmented skin: In principle, this substance alone is inactive. Only when monobenzone docks onto the tyrosinase enzyme, a so-called hapten is generated in the pigmented cell. This is a newly formed “foreign structure” that can specifically activate the immune system. By applying low doses of monobenzone several times in succession on the rodents' skin the researchers explored this path in detail on mice.

The way in which the animals' immune defense reacted to this hapten amazed the researchers. “Normally the immune system mobilizes a mixture of various white blood cells to attack hapten-exposed tissues,” reports Dr. van den Boorn. “However, the multiple monobenzone exposures induced only natural killer cells to recognize and attack the pigmented cells." Natural killer cells are part of the innate immune system and kill abnormal cells - such as cancer cells or virus-infected cells. Previously, scientists believed that they did not have the capacity to remember and specifically attack the body's own tissues. Up to now, this phenomenon has only been attributed to T and B lymphocytes.

“However, our results clearly show that natural killer cells can also carry out a long-lasting and effective immune reaction against the body's own pigmented cells, including malignant melanoma cells,” says Prof. Dr. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology of the University of Bonn. The researchers established this by studying mice that were not able to form any functional T and B lymphocytes. Nonetheless, white spots still developed in the animals' fur, and previously transferred malignant melanoma cells were destroyed, because the mice’s natural killer cells remembered and attacked the pigmented cells.

The NLRP3 inflammasome serves as a checkpoint

In order for this immune response to occur, an immune-checkpoint had to give the green light first: the NLRP3 inflammasome. “This is a protein complex that integrates multiple pieces of signaling information in macrophages, special phagocytes that reside in tissues. Once switched on, macrophages then decide whether immune cells including natural killer cells receive their marching orders,” explains Prof. Dr. Veit Hornung. If the researchers incapacitated this checkpoint, the monobenzone-induced tyrosinase hapten did not trigger the desired immune reaction anymore.

The results may open up new therapeutic avenues for the treatment of malignant melanoma, demonstrate a new type of immune recognition and could even shed new light onto the incipient events causing the development of vitiligo.

Publication: Jasper G. van den Boorn, Christopher Jakobs, Christian Hagen, Marcel Renn, Rosalie M. Luiten, Cornelis J.M. Melief, Thomas Tüting, Natalio Garbi, Gunther Hartmann & Veit Hornung: Inflammasome-dependent induction of adaptive NK cell memory, Immunity, DOI: 10.1016/j.immuni.2016.05.008

Media contact information:

Dr. Jasper van den Boorn
Institute of Clinical Chemistry and Clinical Pharmacology
University of Bonn Hospital
Tel. ++49-228-28751143
E-Mail: jvdboorn@uni-bonn.de

Prof. Dr. Veit Hornung
Gene Center and Department of Biochemistry
Ludwig Maximilian University of Munich
Tel. ++49-89-2180711110
Email: hornung@genzentrum.lmu.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>