Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanoparticle versus cancer


Scientists have created nanoparticles which cure cancer harmlessly

The Lomonosov Moscow State University researchers in collaboration with their German colleagues have succeeded in proving that silicon nanoparticles can be applied to diagnose and cure cancer. For the first time the ability of particles to penetrate into the diseased cells effectively and dissolve completely after delivering the drug was shown. The details of the research are presented in the article published in the latest issue of Nanomedicine: Nanotechnology, Biology and Medicine.

Left: Schematic representation of silicon nanoparticles (SiNPs) biodegradation processes: (I) localization of SiNPs on the cell membrane; (II) penetration of SiNPs in the cytoplasm with partial solubility of the nanoparticles; (III) strong dissolution of SiNPs after 10-13 days within the cell body. Right: Raman spectra of SiNPs for different incubation times: 9 h, 48 h and 13 days of incubation depicted in red, blue and green, respectively. Inset: corresponding xz-cross-section of Raman spectroscopy images of MCF-7 cells cultivated with SiNPs.

Source: Lubov Osminkina

The scientific direction of the team is called theranostics. This term means a combined 'therapy' and 'diagnostics', denoting the process of simultaneous detection and treatment of the disease. One of its applications is spotting a range of oncologic diseases with the help of nanoparticles filled with medicine for their targeted delivery into a cancer cell.

Nowadays a lot of such nanoparticles do not meet the requirement of biocompatibility. According to one of the researchers, Liubov Osminkina (senior research fellow, Physics Department of Lomonosov Moscow State University), some of the nanoparticles can act quickly, deliver the drug accurately, cure a number of diseases, but months later a patient may suffer from liver, kidney, lung pains, or even headache.

'The reason is that gold, silver, titanium oxide, cadmium selenide and a plenty of other nanoparticles are almost not excreted,' Liubov Osminkina explains. 'When nanoparticles reach the bloodstream, they can get stuck in internal organs and after a while they begin to harm the organism due to prolonged toxic effects.'

Searching not only biocompatible, but also bio-degradable transportation for a targeted drug delivery scientists noticed porous silicon. Its nano-particles would certainly do no harm, rather may help the organism, as the result of their dissolution is silicic acid, vital for bones and connective tissues.

These nanoparticles were Liubov Osminkina's main concern when she received the DAAD-MSU "Vladimir Vernadsky" grant in 2013 (a joint program for research by Moscow State University and the German Academic Exchange Service DAAD) for synthesizing photoluminescent nanoparticles of porous silicon nanowires for theranostics.

She went to Jena, the Leibniz Institute of Photonic Technology one of the main scientific directions of which is biophotonics -- the use of optical techniques for studying living systems. The particular attention of a young employee of Moscow State University was focused on the Raman micro-spectroscopy.

The Raman spectroscopy is based on the aptitude of molecules to a so-called inelastic scattering of monochromatic light that is accompanied by a change of their internal state and thus a change of the frequency response of the emitted photons. This type of spectroscopy distinguishes the relative simplicity and the abundance of the information obtained -- enough to illuminate a material with a laser and analyze the spectrum of the radiation.

Raman micro-spectroscopy was used at the Institute of Photonic Technology, among many other optical methods. With its help, scientists scanned the contents of a living cell and comparing the spectra obtained lined up a picture of what and where is located inside the cell.

'That's when I came up with an idea to conduct a study of nanoparticle biodegradation using Raman micro-spectroscopy,' the scientist says. 'This technique makes possible not only to locate the nanoparticles in the cell (the signals from the silicon and cell components have different frequencies), but also to watch the process of their disintegration. The latter was possible because, as already known, the Raman spectrum of silicon nanoparticles depends on their size - the smaller they are, the broader the spectrum becomes, shifting to lower frequencies'

Upon successful completion of the grant study, Osminkina won another DAAD-MSU grant which was for the implementation of her new ideas -- and she went to Jena again. The essence of Osminkina and her colleagues' new study came to the fact that the breast cancer cells were incubated with silicon nanoparticles of the 100 nm in size, and then, in particular, with the Raman micro-spectrometer, scientists have observed what happens in the cells during different periods of time from 5 hours to 13 days.

Taking into account Raman spectrum and the reconstructed images of these particles and the cells they saw how during the first 5-9 hours nanoparticles localize on the cell membranes and penetrate into the cell during the next day and then begin to biodegrade, as evidenced by a decrease in signal amplitude, spectral broadening and the appearance of the peak of the amorphous silicon phase. It was shown that on the 13th day the nanoparticles dissolve completely and the signal disappears.

"Thus, for the first time we have shown that porous silicon nanoparticles could be completely harmless theranostics agents for many types of cancer. They do not only easily penetrate into the diseased cell, but when filled with drug, can emit it during their dissolving. I believe that the results of our work are of great importance in the long term as the basis for creating drugs based on biocompatible and biodegradable silicon nanoparticles,' Lubov Osminkina says.

Media Contact

Vladimir Koryagin 

Vladimir Koryagin | EurekAlert!

Further reports about: Nanoparticles Photonic Raman frequencies silicon nanoparticles spectroscopy spectrum

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>