Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule linked to aggressive pancreatic cancer offers potential clinical advances

21.05.2014

Mayo Clinic researchers have discovered an enzyme they say is tightly linked to how aggressive pancreatic cancer will be in a patient.

They say the study, published in Molecular Cancer Research, provides key insights into the most aggressive form of the disease, which is one of the deadliest human cancers.

It also offers a number of possible future clinical advances, such as a way to gauge outcome in individual patients, and insight into potential therapy to shut down activity of the enzyme, known as Rac1b.

"The implication from our research is that Rac1b is activating unique pathways in pancreatic tumors that make this cancer aggressive. If we can therapeutically target that pathway, we may be able to have an impact on this very difficult-to-treat disease," says the study's senior investigator, Derek Radisky, Ph.D., a researcher with the Mayo Clinic Cancer Center in Jacksonville, Fla.

... more about:
»Cancer »aggressive »biopsies »enzyme »offers »pancreatic

A potential drug target would have to be found within the cancer-causing pathways activated by Rac1b, since the enzyme is difficult to target because it is involved in many normal biological processes, Dr. Radisky says. He and his colleagues are now working to uncover how Rac1b ramps up pancreatic cancer progression.

The RAC1 superfamily of proteins — which play important regulatory roles in cell growth and cell movement — have been implicated in other cancers, such as melanoma and non-small cell lung cancer, but before this study, no one knew that one sub-form, Rac1b, played a role in pancreatic cancer.

The research team includes investigators from Mayo Clinic in Florida and Mayo Clinic SPORE in Pancreatic Cancer, one of three cancer centers in the U.S. to receive a Specialized Program of Research Excellence (SPORE) grant for pancreatic cancer from the National Cancer Institute. The Pancreatic Cancer SPORE is specifically committed to reducing the incidence and mortality of pancreatic cancer. The team began their research by investigating why pancreatic cancer cells produce matrix metalloproteinases (MMPs), enzymes that break down the sticky adhesion molecules that keep cells glued together in a tissue, or in a tumor. MMPs allow cancer cells to migrate away from a tumor.

"Most MMPs are made by cells that surround and support a tumor, not by the tumor itself, as we see in pancreatic cancer," Dr. Radisky says.

Using a combination of human tissue biopsies, novel transgenic animal models and cell culture studies, the researchers established a link between expression of MMP3 and activation of Rac1b. Then, using Mayo Clinic's large panel of human pancreatic cancer biopsies, the scientists found that expression levels of Rac1b were significantly associated with the cancer's prognosis.

The researchers verified their findings by treating cultured pancreatic cancer cells with recombinant MMP3. They found this was sufficient to induce Rac1b and increased cancer invasiveness.

"Pancreatic cancer is not uniformly aggressive — some patients have a relatively better outcome. This work allows us to hone in on those patients who don't do as well, and who would most benefit from more targeted therapies," Dr. Radisky says.

###

The study was supported by the National Cancer Institute (CA122086, CA154387, R01CA159222 and R01CA136754), and by the Mayo Clinic SPORE in Pancreatic Cancer (P50 CA102701).

About Mayo Clinic

Recognizing 150 years of serving humanity in 2014, Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit 150years.mayoclinic.org, MayoClinic.org or newsnetwork.mayoclinic.org/.

Kevin Punsky | idw - Informationsdienst Wissenschaft

Further reports about: Cancer aggressive biopsies enzyme offers pancreatic

More articles from Health and Medicine:

nachricht Real-time imaging of lung lesions during surgery helps localize tumors and improve precision
30.07.2015 | American Association for Thoracic Surgery

nachricht Experimental MERS vaccine shows promise in animal studies
29.07.2015 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Seeing” molecular interactions could give boost to organic electronics

03.08.2015 | Materials Sciences

Stroke: news about platelets

03.08.2015 | Life Sciences

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>