Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016

Published in Stem Cells and Development

Researchers from the Institute for Stem Cell Research and Regenerative Medicine at the University Clinic of Düsseldorf have established an in vitro model system for investigating nonalcoholic fatty liver disease (NAFLD). The study led by Prof. James Adjaye has now been published in the journal Stem Cells and Development.


Histological section of a liver biopsy of a healthy individual (upper left) and an NAFLD patient (upper right) (1). Lipid droplets are visible as vacuoles. Induced pluripotent stem cells, which express the pluripotency marker OCT4 (middle left, green), are in vitro differentiated into hepatocyte-like cells, characterized by the expression of ALBUMIN (ALB, middle right, red) and alpha-fetoprotein (AFP, middle green right). Unstimulated in vitro derived hepatocyte-like cells do not incorporate lipid droplets (lower left) while they develop massive lipid droplets after stimulation with oleic acid (lower right, green).

Credit: Graffmann N et al.

Nonalcoholic fatty liver disease (NAFLD), also called steatosis, is a dramatically under-estimated liver disease, with increasing incidences throughout the world. It is frequently associated with obesity and type-2 diabetes. Approximately one third of the general population in Western countries are affected, often without even having symptoms.

It is a result of a high caloric diet in combination with a lack of exercise, where the liver starts incorporating fat as lipid droplets. Initially, this is a benign state, which can, however, develop into NASH /steatohepatitis, an inflammatory disease of the liver. Then many patients develop fibrosis, cirrhosis or even liver cancer. However, in many cases patients die of heart failure before they develop severe liver damage.

A major obstacle for NAFLD research was, up to now, that biopsies of patients and healthy individuals were required. The Düsseldorf researchers elegantly solved this problem by reprogramming skin cells into so called induced pluripotent stem cells which they differentiated into hepatocyte like cells. "Although our hepatocyte-like cells are not fully mature, they are already an excellent model system for the analysis of such a complex disease", explains Dr. Nina Graffmann, first author of the study.

The researchers recapitulated important steps of the disease in vitro. For example they demonstrated up-regulation of PLIN2, a protein that covers lipid droplets. Mice without PLIN2 do not become obese, even when overfed with a high fat diet. Also the key role of PPARα, a transcription factor involved in controlling glucose and lipid metabolism, was reproduced in the in vitro system.

"In our system, we can efficiently induce lipid storage in hepatocyte-like cells and manipulate associated proteins or microRNAs by adding various factors into the culture. Thus, our in vitro model offers the opportunity to analyse drugs which might reduce the stored fat in hepatocytes" says Dr. Graffmann.

The team now expands the model using induced pluripotent stem cells derived from NAFLD patients, hoping to discover differences which might explain the course of the disease.

"Using as reference the data and biomarkers obtained from our initial analyses on patient liver biopsies and matching serum samples (1), we hope to better understand the etiology of NAFLD and the development of NASH at the level of the individual, with the ultimate aim of developing targeted therapy options," states Professor James Adjaye, senior author of the current study.

###

Publication: Graffmann N, Ring S, Kawala MA, Wruck W, Ncube A, Trompeter HI, et al. Modelling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells reveals activation of PLIN2 and confirms regulatory functions of PPARalpha. Stem Cells and Development. 2016.

Media Contact

James Adjaye
James.Adjaye@med.uni-duesseldorf.de
49-021-181-08191

http://www.uni-duesseldorf.de/ 

James Adjaye | EurekAlert!

More articles from Health and Medicine:

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>