Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiologists develop a novel method for rapid detection of antibiotic resistance

14.02.2018

A research team from the Institute of Medical Microbiology, University of Münster, Germany, has developed a method that accelerates resistance testing. In cooperation with an industrial partner, this innovative method can now be optimized for the diagnostic market.

Respiratory, urinary tract, wound infections, and sepsis: the list of sites in which severe and life-threatening diseases manifest as a result of multidrug resistant microorganisms is long. The best option is an antibiotic treatment targeted specifically to the detected pathogen. However, the identification of microorganisms and their resistances to antibiotics is time consuming.


Symbolic picture: Application of microdroplets for rapid determination of resistance using MALDI-TOF mass spectrometry

photo: FZ / E. Deiters-Keul


Priv.-Doz. Dr. Evgeny Idelevich, Prof. Dr. Karsten Becker, Damayanti Kaiser, Alexandra Busch, Carlos Correa-Martinez and Luise Storck (from left) standing in front of the MALDI-TOF instrument.

photo: FZ / E. Deiters-Keul

A research team from the Institute of Medical Microbiology, University of Münster, Germany, has developed a method that considerably accelerates resistance testing. Supported by the German Federal Ministry of Education and Research (BMBF), and in cooperation with an industrial partner, the research team is currently developing this method. Soon to be on the market, it will be readily available for patient management.

The novel method proposed by project leaders Evgeny A. Idelevich, M.D. and Karsten Becker, M.D. is based on MALDI-TOF mass spectrometry, which was recently introduced for microbial identification. Prof. Becker observed, “We also need new techniques for more expedient detection of acquired antibiotic resistance”.

Currently applied methods require more than 24 hours, as they are dependent on bacterial growth. The innovative method from Münster would allow earlier optimization of patient treatment and the prompt initiation of infection control measures, crucial for the protection of hospital patients from a spread of multidrug resistant bacteria.

Currently, many physicians administer broad-spectrum antibiotics to swiftly provide a reliable medicine. Unfortunately, microorganisms can become resistant due to this very treatment. The shift to a more targeted antibiotic therapy reduces antibiotic selection pressure and thus, the emergence of multiresistant bacteria.

Dr. Idelevich added, “The application of MALDI-TOF mass spectrometry for resistance testing was attractive to our research due to its expediency and high accuracy. It can also be optimally combined with the identification process, rendering it cost-efficient”.

Based on this technology, both researchers have developed a rapid and universal method for resistance determination which is independent from the underlying resistance mechanisms and can be performed simultaneously for multiple antibiotics. Through the license agreement with Bruker Daltonik (Bremen, Germany), a pioneer in mass spectrometry technologies, this innovative method can now be developed further and optimized for the diagnostic market.

Prof. Becker commented, “We hope that our method will be available for routine use in clinical laboratories in 2-3 years”. Here in Münster, we are particularly proud of the MALDI-TOF mass spectrometry project, as the MALDI-TOF technology was greatly influenced in the 1980s by Münster scientists. At that time, the groundwork was established for today’s microbial identification. Currently, thousands of laboratories worldwide already use a MALDI-TOF instrument. This sets optimal preconditions for the wide-spread and cost-efficient implementation of our method.”

The cooperation between academic and industrial institutions in Münster and Bremen will be supported by the BMBF for an additional three years; a grant totaling more than 900,000 Euros was awarded to the academic and industrial partners.

Media contact:

Dr. Thomas Bauer
Referent Research and Teaching at Münster University Medical Faculty
phone: 0251-83-58937
mobile: 0171-4948979
email: thbauer@uni-muenster.de

Dr. Thomas Bauer | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-muenster.de/

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>