Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanistic insights into spinal muscular atrophy suggest new paths for treatment

13.01.2015

Researchers find that in mouse models of the disease subcutaneous drug administration is sufficient to treat SMA

Today, a team of researchers from Cold Spring Harbor Laboratory (CSHL) sheds new light on the underlying pathology of spinal muscular atrophy (SMA), a rare but devastating disease that causes muscle weakness and paralysis and is the leading genetic cause of infant deaths. The newly obtained insights may prove valuable as scientists currently work to define optimal treatment strategies for patients.


Spinal muscular atrophy is the leading genetic causes of death for infants, but there is currently no approved treatment. A team of scientists from Cold Spring Harbor Laboratory has a potential drug to treat the disease that is injected into the cerebrospinal fluid of patients. But the researchers have discovered that in mouse models the drug is effective even when injected subcutaneously, and it is not necessary in the central nervous system. Shown here are spinal sections from three different mice with spinal muscular atrophy. Systemic drug treatment (middle panel) increases the presence of motor neurons (red spots) over the untreated mice (left panel). Surprisingly, the results are very similar when treatment is excluded from the central nervous system (right panel), suggesting a possible new path for spinal muscular atrophy drug treatment.

Credit: A. Krainer/ Cold Spring Harbor Laboratory

SMA is a motor neuron disease, meaning that it leads to the degeneration of nerves that control muscles and voluntary movement. These neurons require a protein known as Survival of Motor Neuron (SMN). Normally, all cells contain the instructions for two variants of the protein, called SMN1 and SMN2. In healthy patients, SMN1 is abundant, while SMN2, due to a quirk of molecular editing, is produced primarily in a shortened, unstable form.

In patients with SMA, however, the instructions to produce SMN1 are faulty and cells no longer generate the protein. Therefore, cells are forced to rely on small amounts of full-length SMN2 protein that are produced alongside the shorter, nonfunctional version.

CSHL Professor Adrian Krainer, in collaboration with Isis Pharmaceuticals, has developed a drug that allows the correct editing to occur, thereby greatly increasing the amount of functional SMN2 protein in neurons. The drug, known as an antisense oligonucleotide (ASO), showed great promise in preclinical mouse models of SMA. It is now in Phase 3 clinical trials in SMA patients.

The drug is delivered directly into the cerebrospinal fluid of infants and children with SMA. "It is largely believed in our field that SMN is essential in the central nervous system (CNS) - not in peripheral tissues like the limbs or liver - so most efforts have been focused on increasing full-length SMN levels in the CNS," explains Krainer. "But over the last few years, evidence has been building that challenges our assumptions about the pathology of the disease. The question is: do we need to increase SMN levels in the CNS, in peripheral tissues, or both?"

In their new work, reported today in Genes & Development, the researchers developed a method to restore SMN production only in peripheral tissues, allowing them to define the role of the drug both inside and outside of the CNS. The team treated well-established mouse models of SMA with the ASO subcutaneously. Consistent with previous results, the drug increased SMN levels in both the CNS and peripheral tissues; in newborn mice, but not in older mice, some of the drug injected in the periphery can reach the CNS. The treatment effectively cured the animals.

The team then injected a "decoy" oligonucleotide into the CNS, along with the subcutaneous injection of the SMA ASO. "Our decoy was thus able to inactivate the drug only in the CNS," explains Krainer. "Full-length SMN2 was still produced in peripheral tissues, but there was no increase in SMN2 made in the CNS, where we expected it to be important." But the results were striking and unanticipated. "We were amazed to find that our decoy had absolutely no effect on motor neurons or recovery. Contrary to our initial assumptions, increasing SMN levels in the CNS is not essential to rescue the SMA phenotypes in these mouse models of the disease."

The work has implications as researchers and clinicians work to develop optimal treatment strategies for SMA. "Already, our ASO is showing great potential in the clinic," says Krainer. "There is a possibility that modifying the way the drug is administered may produce even better outcomes; alternatively, our observations may reflect unique idiosyncrasies of the mouse models, but even then it will be important to understand the underlying mechanisms."

###

This work was supported by the US National Institutes of Health, the St. Giles Foundation and Cold Spring Harbor Laboratory, as well as a Cancer Center Support Grant to CSHL and the National Natural Science Foundation of China.

"Motor-neuron-cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models" appears online in Genes and Development on January 12, 2015. The authors are: Yimin Hua, Ying Hsiu Liu, Kentaro Sahashi, Frank Rigo, C. Frank Bennett, Adrian Krainer. The paper can be obtained online at: http://genesdev.cshlp.org

About Cold Spring Harbor Laboratory Celebrating its 125th anniversary in 2015, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to 8 Nobel Prize winners, the private, non-profit Laboratory is more than 600 researchers and technicians strong. The Meetings & Courses program hosts more than 12,000 scientists from around the world each year on its campuses in Long Island and in Suzhou, China. The Laboratory's education arm also includes an academic publishing house, a graduate school and programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu.

Jaclyn Jansen | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>