Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Uncover Regulatory Network in the Kidney

19.03.2015

The kidney carries out vital functions by continuously filtering the blood and excreting waste products into the urine. This is achieved by a complex system of tubules which transports the urine and regulates its composition.

PhD student Annekatrin Aue, Dr. Christian Hinze and Professor Kai Schmidt-Ott of the Max Delbrück Center for Molecular Medicine (MDC) have now discovered how parts of these kidney tubules establish an inner space (lumen) and form a tight barrier against adjacent structures. The epithelial cells which line the tubules coordinate these processes through a novel molecular signaling pathway (Journal of the American Society of Nephrology, doi: 10.1681/ASN.2014080759)1.


Kidney of a mouse embryo. The cell nuclei are stained green, the transcription factor Grhl2 red. (Photo: Katharina Walentin/ Copyright: MDC)

The starting point of the MDC researcher's analyses was the transcription factor grainyhead-like 2 (Grhl2). As the research group led by Professor Schmidt-Ott discovered a few years ago, Grhl2 regulates the formation and structural integrity of epithelial cells lining the inner and outer surfaces of the body. Now, the researchers have shown that this gene regulator also plays a role in the kidney.

The studies, which were funded by the German Research Foundation (DFG) and the Urological Research Foundation, revealed that Grhl2 is primarily expressed in the renal collecting duct and in its embryonic precursors, the nephric duct and the ureteric bud. The collecting ducts form particularly tight, impermeable segments of the nephron, which is the basic structural unit of the kidney. The kidney filters around 1700 liters of blood every day, producing about 180 liters of primary urine.

However, after passing through the tubular system only one to two liters of urine are excreted, while the remaining vital components are reabsorbed. The collecting ducts carry out the fine-tuning of the urinary composition, thereby ensuring life-sustaining processes like blood pressure regulation and body water homeostasis.

To determine the function of the Grhl2 transcription factor in the kidney, the researchers investigated cell cultures of collecting duct cells and nephric ducts of mouse embryos deficient for this factor. The result: If Grhl2 is missing, the barrier function of these epithelial cells is significantly reduced and lumen expansion is defective.

Furthermore, the MDC researchers found that the transcription factor Grhl2 does not work alone. It teams up with and regulates another transcription factor, ovo-like 2 (Ovol2). This tandem controls a gene that is important for the sealing of epithelial cell clusters (claudin 4), thus ensuring an impermeable barrier, as well as another gene (Rab 25), which controls cellular trafficking of constituents between the cell and the internal environment of the lumen. Hence, the researchers could elucidate a novel molecular signaling pathway in the kidney.

Barrier formation and lumen expansion are essential components for normal kidney development and function. However, they also participate in kidney pathology, such as cystic kidney diseases, which lead to an uncontrolled expansion of the tubular lumen. Further research must demonstrate whether the insights obtained by the MDC researchers are of clinical importance.

1A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion
Annekatrin Aue*†, Christian Hinze*‡, Katharina Walentin*, Janett Ruffert*, Yesim Yurtdas*§‖, Max Werth*, Wei Chen*, Anja Rabien§‖, Ergin Kilic¶, Jörg-Dieter Schulzke**, Michael Schumann** and Kai M. Schmidt-Ott*†‡
*Max Delbrueck Center for Molecular Medicine, Berlin, Germany
†Experimental and Clinical Research Center, and
Departments of ‡Nephrology, §Urology,
¶Pathology, and
**Gastroenterology, Charité Medical University, Berlin, Germany; and
‖Berlin Institute of Urologic Research, Berlin, Germany
#Corresponding author: Prof. Dr. Kai M. Schmidt-Ott, MDC, email: kai.schmidt-ott@charite.de

A micrograph of the kidney can be downloaded from the Internet at:
https://www.mdc-berlin.de/44046890/en/news/2015

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Weitere Informationen:

https://www.mdc-berlin.de/44319749/en/news/2015/20150319-mdc_researchers_uncover...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>