Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lung cancer may be treatable with use of SapC-DOPS technology, research shows


Lung cancer is the most common and the deadliest type of cancer worldwide, with about 221,000 new cases and an estimated 158,000 deaths in 2015 in the U.S., according to the American Cancer Society.

Cigarette smoking is the leading cause of lung cancer, followed by environmental and occupational exposure to pollutants.

A University of Cincinnati (UC) study, published in the advance online edition of the journal Molecular Cancer Therapeutics, provides hope that the therapeutic agent SapC-DOPS could be used for treatment of this cancer.

Xiaoyang Qi, PhD, associate director and associate professor in the Division of Hematology Oncology at the UC College of Medicine and a member of the Cincinnati Cancer Center, the UC Cancer and Neuroscience Institutes and the Brain Tumor Center, says these findings indicate that SapC-DOPS shows promise for treatment of one of the deadliest cancers globally. The findings also provide stronger evidence that this agent could be a key treatment for a variety of cancers.

"I partnered with scientists at Nanjing Medical University in China for this research, as lung cancer in China is a major health issue," Qi says. "As reported by the International Agency for Research on Cancer, more than half of lung cancer deaths caused by air pollutants worldwide occurred in China and other East Asian countries.

"Standard treatment options for lung cancer, including chemotherapy, radiation and surgery, have undesirable side effects that impact the quality of life of the cancer patient, which is why the targeted use of SapC-DOPS could be so beneficial."

SapC-DOPS consists of a lysosomal protein, saposin C (SapC), and a phospholipid named dioleoylphosphatidylserine (DOPS), which are combined and assembled into tiny cavities, or nanovesicles, to target and kill various forms of cancer cells.

Lysosomes are membrane-enclosed organelles that contain enzymes capable of breaking down all types of biological components; phospholipids are major components of all cell membranes and form lipid bilayers--or cell membranes.

Qi and collaborators have previously found that the combination of these two natural cellular components, called SapC-DOPS, caused cell death in many cancer cell types including brain, skin, prostate, blood, breast and pancreatic cancer, while sparing normal cells and tissues.

"Liposomal formulations as vehicles for drug delivery are the subject of intense research," he continues. "Compared with non-encapsulated, free drugs, they provide improved biocompatibility and targeted delivery. Despite promising results in preclinical models of lung cancer and many other cancer types, only a few non-targeted liposomal formulations have been approved for cancer treatment by regulatory agencies. Clinical trials are under way to evaluate some of these in lung cancer patients. However, so far, these liposomes have been shown to be less effective when compared with free drug administration, which is why the SapC-DOPS research is promising as a targeted treatment for lung cancer."

In this study, researchers used SapC-DOPS to selectively target the cell membrane of lung tumors in animal models and in human cell cultures.

Qi says a distinguishing feature of SapC-DOPS is its ability to bind to phosphatidylseriine (PS), a lipid, which is found on the membrane surfaces of all tumor cells.

"To evaluate the role of external cell PS, we evaluated PS exposure in human tumor and non-tumor cells in culture," he says. "We also introduced these cells into animal models and then injected the SapC-DOPS vesicles intravenously to see if we could halt tumor growth."

"Using a double-tracking method in live models, we showed that the nanovesicles were specifically targeted to the tumors. These data suggest that the acidic phospholipid PS is a biomarker for lung cancer, as it has been found to be for pancreatic and brain tumors in previous studies, and can be effectively targeted for therapy using cancer-selective SapC-DOPS nanovesicles."

"We observed that the nanovesicles selectively killed human lung cancer cells, and the noncancerous, or untransformed cells, remained unaffected," Qi continues. "This toxic effect correlated to the surface exposure level of PS on the tumor cells."

Importantly, animals treated with SapC-DOPS showed clear survival benefits and their tumors shrank or disappeared.

"Our results show that SapC-DOPS could be a promising treatment option for lung cancer worthy of further clinical study."


Other collaborators on this study include Shuli Zhao, Yunzhong Nie and Yayi Hou, all affiliated with Nanjing Medical University; Zhengtao Chu, UC and Cincinnati Children's Hospital Medical Center; and Victor Blanco, UC.

This work was supported in part by the National Institutes of Health/National Cancer Institute (1R01CA158372), the New Drug State Key Project (009ZX09102-20) and the Division of Hematology Oncology, University of Cincinnati College of Medicine.

The development and commercialization of this technology has been licensed to Bexion Pharmaceuticals, LLC, in which Qi, holds a minor (less than 5 percent) equity interest. The other authors declared no conflict of interest.

Media Contact

Katie Pence


Katie Pence | EurekAlert!

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>