Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light shed on cause of lung injury in severe flu

01.03.2012
New research published in the Journal of Leukocyte Biology suggests that natural killer T cells reduce the accumulation of monocytes and prevent lung injury in severe flu, controlling the outcome of infection

While some scientists report engineering a super virulent strain of the H5N1 influenza virus, which could potentially wipe out a significant percentage of the human population, another group of researchers from the United Kingdom now reports a discovery that may one day help mitigate the deadly effects of all flu strains.

This report, appearing in the March 2012 print issue of the Journal of Leukocyte Biology, describes findings that may help prevent deaths from severe flu outbreaks, especially from seemingly healthy young people. Specifically, the researchers found that immune cells called, "natural killer T cells," may reduce the overwhelming numbers of another type of immune cell, called "inflammatory monocytes," which when present in large numbers, lead to lung injury at the end stage of severe flu infection.

"We hope this study will ultimately benefit individuals—especially the young—who succumb to a severe form of flu infection," said Ling-Pei Ho, M.D., Ph.D., the researcher who led the work from the MRC Human Immunology Unit, Oxford University in Oxford, United Kingdom. "The study highlights a key immune process that occurs in severe flu infection, and provides a platform for a new approach and further research in this area."

To make their discovery, scientists infected three groups of mice with H1N1 flu virus. (Note: this is NOT the H5N1 flu virus that has been at the center of recent controversy.) The first group included normal mice; the second group was devoid of natural killer T cells, and the third was given a treatment that specifically activated natural killer T cells. Researchers observed the outcome of flu infection and found that the mice without natural killer T cells did worst, and those with activated killer T cells did best. Mice that lacked natural killer T cells had increased amounts of monocytes in the lungs, and severe lung injury similar to those seen in Spanish flu and lethal swine flu. Using highly-sensitive fluorescent antibody technology, this study was one of the first to document the sequential changes in innate immune response in the lungs during severe flu infection. These findings essentially provide a "road map" of the chronological changes in the lungs during severe flu infection.

"Despite affecting practically everyone, the flu may be one of the most underestimated viruses in terms of its devastating potential," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "As the H5N1 research shows, it is quite possible for the virus to mutate or be bioengineered into a form that could wipe most of us out. What most people don't realize is that the severe illness from these flu strains is caused by both the virus and an overaggressive or inappropriate immune response. Research like this, however, offers hope that we'll be able to find more universal ways improve the effectiveness of immunity and combat the severe strains of the flu."

The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigatins focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: Wai Ling Kok, Laura Denney, Kambez Benam, Suzanne Cole, Colin Clelland, Andrew J. McMichael, and Ling-Pei Ho. Invariant NKT cells reduce accumulation of inflammatory monocytes in the lungs and decrease immune-pathology during severe influenza A virus infection. J. Leuk. Biol. March 2012; 91:357-368; doi:10.1189/jlb.0411184; http://www.jleukbio.org/content/91/3/357.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>