Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key factor discovered in the formation of metastases in melanoma

22.01.2015

Melanoma, the most aggressive of all skin cancer strains, is often fatal for patients due to the pronounced formation of metastases. Until now, a melanoma’s rampant growth was mainly attributed to genetic causes, such as mutations in certain genes.

However, researchers from the University of Zurich now reveal that so-called epigenetic factors play a role in the formation of metastases in malignant skin cancer. This opens up new possibilities for future cancer treatments.

Patients who visit the doctor because of malignant skin cancer often go too late – the aggressive cancer has already formed numerous metastases in their bodies. This rapid, malignant metastatic formation of melanoma, was previously put down to the high mutation rate that is characteristic of melanoma, i.e. genetic changes that stimulate the growth of cancer cells.

Various cancer drugs therefore target the signaling pathways activated in the process, some of which have recorded astonishingly positive results in the clinic and are able to prolong the lives of seriously sick patients. Unfortunately, however, in most cases a kind of resistance develops: Eventually, the cancer cells no longer respond to the drug and the tumor spreads again.

Evidently, the cancer cells have found new ways to grow. A team of researchers headed by Professor Lukas Sommer from the University of Zurich’s Institute of Anatomy has now found a possible explanation for this dynamic behavior in cancer cells: The scientists believe that, depending on the prevalent conditions, cancer cells are able to “read” different genes and use them to their own end.

A highly active epigenetic factor in cancer cells

The readability of genes is controlled by epigenetic factors, namely factors which do not influence the gene sequence directly, but rather cause certain genes and chromosomal segments to be packed in different densities – and thus make them accessible for reading. Consequently, the Zurich-based researchers studied whether epigenetic factors are especially active in melanoma cells – and stumbled across EZH2, an epigenetic control protein found very frequently in malignant melanoma cells compared to normal cells.

Joining forces with dermatologists and oncologists from the University Hospital in Zurich and backed by the University Research Priority Program “Translational Cancer Research”, Sommer’s team was able to demonstrate that, in melanoma cells, the epigenetic factor EZH2 controls genes that govern tumor growth as well as genes that are important for the formation of metastases.

In their study, the researcher exploited this central position of EZH2 to combat the cancer: They used a pharmacological inhibitor to suppress the activity of EZH2. As a result, the researchers were able to prevent the growth and malignant spread of the cancer in the animal model and human melanoma cells.

“To our astonishment, we were able to use the approach to influence the progression of the disease, even if tumors had already developed,” explains Sommer. Epigenetic factors like EZH2 therefore appear to be highly promising targets for future cancer treatments, especially combined with other drugs that are already available.


Literature:
Daniel Zingg, Julien Debbache, Simon M. Schaefer, Eylul Tuncer, Sandra C. Frommel, Phil Cheng, Natalia Arenas-Ramirez, Jessica Haeusel, Yudong Zhang, Michael T. McCabe, Caretha L. Creasy, Mitchell P. Levesque, Onur Boyman, Raffaella Santoro, Olga Shakhova, Reinhard Dummer, and Lukas Sommer. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nature Communications, 22 January, 2015. Doi: NCOMMS7051


Contacts:
Prof. Lukas Sommer
Institute of Anatomy
University of Zurich
Tel.: +41 44 635 53 50
Email: lukas.sommer@anatom.uzh.ch

Bettina Jakob
Media Relations
University of Zurich
Tel.: +41 44 634 44 39
E-Mail: bettina.jakob@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2015/schluessel-faktor-bei-metastasen-bildu...

Bettina Jakob | Universität Zürich

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>