Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It don't mean a thing if the brain ain't got that swing

28.07.2015

New UC Berkeley study paves the way for treating brain rhythm disorders

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another for a fraction of a second and harmonize, then go back to improvising, according to new research led by UC Berkeley.


The anterior (blue) and posterior (orange) regions of the prefrontal cortex sync up to communicate cognitive goals to one another.

Image courtesy of Bradley Voytek

These findings, reported today in the journal Nature Neuroscience, could pave the way for more targeted treatments for people with brain disorders marked by fast, slow or chaotic brain waves, also known as neural oscillations.

Tracking the changing rhythms of the healthy human brain at work advances our understanding of such disorders as Parkinson's disease, schizophrenia and even autism, which are characterized in part by offbeat brain rhythms. In jazz lingo, for example, bands of neurons in certain mental illnesses may be malfunctioning because they're tuning in to blue notes, or playing double time or half time.

"The human brain has 86 billion or so neurons all trying to talk to each other in this incredibly messy, noisy and electrochemical soup," said study lead author Bradley Voytek. "Our results help explain the mechanism for how brain networks quickly come together and break apart as needed."

Voytek and fellow researchers at UC Berkeley's Helen Wills Neuroscience Institute measured electrical activity in the brains of cognitively healthy epilepsy patients. They found that, as the mental exercises became more demanding, theta waves at 4-8 Hertz or cycles per second synchronized within the brain's frontal lobe, enabling it to connect with other brain regions, such as the motor cortex.

"In these brief moments of synchronization, quick communication occurs as the neurons between brain regions lock into these frequencies, and this measure is critical in a variety of disorders," said Voytek, an assistant professor of cognitive science at UC San Diego who conducted the study as a postdoctoral fellow in neuroscience at UC Berkeley.

Previous experiments on animals have shown how brain waves control brain activity. This latest study is among the first to use electrocorticography - which places electrodes directly on the exposed surface of the brain - to measure neural oscillations as people perform cognitively challenging tasks and show how these rhythms control communication between brain regions.

There are five types of brain wave frequencies - Gamma, Beta, Alpha, Theta and Delta - and each are thought to play a different role. For example, Theta waves help coordinate neurons as we move around our environment, and thus are key to processing spatial information.

In people with autism, the connection between Alpha waves and neural activity has been found to weaken when they process emotional images. Meanwhile, people with Parkinson's disease show abnormally strong Beta waves in the motor cortex. This locks neurons into the wrong groove and inhibits movement. Fortunately, electrical deep brain stimulation can disrupt abnormally strong Beta waves in Parkinson's and alleviate symptoms, Voytek said.

For the study, epilepsy patients viewed shapes of increasing complexity on a computer screen and were tasked with using different fingers (index or middle) to push a button depending on the shape, color or texture of the shape. The exercise started out simply with participants hitting the button with, say, an index finger each time a square flashed on the screen. But it grew progressively more difficult as the shapes became more layered with colors and textures, and their fingers had to keep up.

As the tasks became more demanding, the oscillations kept up, coordinating more parts of the frontal lobe and synchronizing the information passing between those brain regions.

"The results revealed a delicate coordination in the brain's code," Voytek said. "Our neural orchestra may need no conductor, just brain waves sweeping through to briefly excite neurons, like millions of fans in a stadium doing 'The Wave.'"

###

Other co-authors and researchers on the study are Mark D'Esposito, Robert Knight and David Fegen at UC Berkeley, David Badre at Brown University, Andrew Kayser at the Department of Veterans Affairs in Martinez, Calif., Edward Chang at UCSF, Nathan Crone at Johns Hopkins University and Joseph Parvizi at Stanford University.

Media Contact

Yasmin Anwar
yanwar@berkeley.edu
510-643-7944

 @UCBerkeleyNews

http://www.berkeley.edu 

Yasmin Anwar | EurekAlert!

Further reports about: activity brain regions disorders healthy human brain motor cortex neurons oscillations people with rhythms waves

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>