Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inselspital: Images from the depths of the brain

25.02.2016

The Neuroradiology Department of Bern University Hospital has managed to make the pathological electrical activity within the brain visible by means of an innovative procedure. This is improving the diagnostics of epilepsy patients.

For over 20 years, doctors have been dreaming of depicting the brain’s electrical activity in an MRI scan. Researchers from Bern University Hospital have now succeeded in making this dream a reality by means of a unique method.


The new method can do what the surface EEG cannot: show electrical activities in the brain.

Inselspital, Bern University Hospital


Example of an epilepsy patient before and after the successful operation.

©Department of Diagnostic and Interventional Neuroradiology, Bern University Hospital

The electrical fields are measured indirectly through their effect on magnetic fields,rather than directly. But although a healthy brain’s electrical fields are too weak to produce a measurable disruption of the magnetic field, neuroradiologists can now measure this where the fields are more pronounced in the short term. In patients with epilepsy.

Imaging helps to localise epilepsy and shows healing

The research team of physicist Dr Claus Kiefer and doctors Eugenio Abela, Kaspar Schindler and Roland Wiest from the Support Center for Advanced Neuroimaging (SCAN) at the Department of Diagnostic and Interventional Neuroradiology and the Department of Neurology at Bern University Hospital used the new method in a pilot study with eight epilepsy patients.

In doing so, it was found that the newly developed MR sequence makes magnetic field disturbances visible, even in deep regions of the brain. The surface EEG, which is otherwise used, has never achieved this. As a result, it is possible to localise the origin of the epileptic seizures with even more precision, which benefits those patients who exhibit no structural abnormalities in the “normal” MRI.

In addition, researchers demonstrated that epilepsy patients, who are seizure-free after an operation, no longer show such magnetic field disturbances – that their brain works “disruption-free” like that of a healthy person. On the other hand, patients who continued to have seizures still demonstrated the typical pathological signals. These astounding new insights into the function of our brain were published on 29th January in the renowned American journal, Radiology.

Patented methods only in Bern

The revolutionary imaging method is patented by the University of Bern and is only currently offered at Bern University Hospital. The advantage: If epilepsy patients, whose medication is not helping, need an MRI examination, just eight additional minutes in the MRI can better localise the region of origin of the exaggerated electrical brain activity. This is also the case if patients are not currently having a seizure, as the method is so sensitive that it even records weak epileptic activity that exists between the actual seizures.

The newly developed MR sequence is now expected to be validated internationally in further clinical studies.

Contact:
Prof Dr Roland Wiest, Chief Physician, Department of Diagnostic and Interventional Neuroradiology, Bern University Hospital, +41 31 632 36 73.
Prof Dr Kaspar Schindler, Chief Physician, Department of Neurology, Bern University Hospital, +41 31 632 30 54.

Weitere Informationen:

http://www.ncbi.nlm.nih.gov/pubmed/26824710
http://www.neurorad.insel.ch/

Monika Kugemann | Universitätsspital Bern

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>