Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation halts fat-burning

04.01.2017

Scientists at the University of Bonn have shown in mice that excess pounds can simply be melted away by converting unwanted white fat cells into energy-consuming brown slimming cells. Can this interesting approach also be used to combat obesity? In a recent study, the university researchers show why the inflammatory responses that often occur in overweight people block this kind of fat cell conversion. However, there may be a starting point to bypass this inhibition. The results have now been published in the scientific journal “Cell Reports”.

The vision is enticing: if bodyfat can simply be melted away with new active ingredients, then this could also prevent the widespread consequences of obesity – such as joint problems, diabetes and cardiovascular diseases. The team around Alexander Pfeifer from the Institute of Pharmacology and Toxicology at the University of Bonn has been researching how this could be possible for years.


Prof. Alexander Pfeifer from the Institute of Pharmacology and Toxicology at the University of Bonn.

Photo: Barbara Frommann/Uni Bonn

“In studies in mice, we have found various starting points to convert troublesome white fat cells into desirable brown fat cells,” reports Prof. Pfeifer. The brown cells possess an extremely high number of mitochondria – these cell power stations “burn” white fat by converting it into thermal energy. The result: If the number of brown cells increases, the mice significantly lose weight.

The signal path of the messenger cyclic guanosine monophosphate (cGMP) plays an important role in this fat conversion. “The desirable brown fat cells rely on cGMP,” explains Prof. Pfeifer. As the researchers have shown in various studies on mice, the widespread active ingredient sildenafil or a medication against pulmonary hypertension, for instance, can be used to reduce the number of white fat cells to the benefit of the brown fat cells and thus accelerate fat burning like a turbocharger.

The fat-burning turbocharger comes to a standstill in abdominal fat

Is this a possible option to effectively treat the significantly increasing obesity levels around the world and thus prevent serious complications? This is the question that the researchers are looking into in their current study. They gave mice a high-calorie diet and examined the changes in the animals’ fat tissue.

While hardly any inflammation occurred in the subcutaneous fat of obese mice and cGMP signaling was largely intact, things were very different for the deeper-lying abdominal fat: through the significant weight increase, inflammation had spread and the fat-burning turbocharger cGMP largely came to a standstill.

This uncovered a dual problem: abdominal fat is considered much more dangerous than subcutaneous fat because it triggers inflammation and can promote cardiovascular diseases, for instance. According to the latest results from researchers at the University of Bonn, this is also where cGMP, which is important for fat-burning, was largely blocked. The researchers thus asked themselves: Is it perhaps possible to remove this block?

Lead author Abhishek Sanyal from Prof. Pfeifer’s team looked into this question. He investigated in what way inflammation inhibits the cGMP signal path. “Tumor necrosis factor alpha (TNFalpha) plays an important role here,” reports Sanyal. “The inflammation factor TNFalpha suppresses the cGMP signal path and thus prevents white fat cells from being turned into brown fat cells.”

Using human subcutaneous and abdominal fat samples, the scientists, in cooperation with the University Hospital Leipzig and the Karolinska Institutet Stockholm (Sweden), find similar cahnges not only to rodents but also to the human organism. Although applications for obesity treatments in humans are still a long way off, the results indicate a direction for further research: “Obviously, one possible starting point in combatting obesity could be to inhibit the inflammatory response in abdominal fat while administering cGMP-stimulating active ingredients,” says Prof. Pfeifer to summarize the findings.

Publication: Interplay between obesity-induced inflammation and cGMP signaling in white adipose tissue, Cell Reports, DOI: 10.1016/j.celrep.2016.12.028

Media contact:

Prof. Alexander Pfeifer
Institute of Pharmacology and Toxicology
University of Bonn
Tel. +49 (0)228/28751300
E-mail: alexander.pfeifer@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>