Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection defense: call for support by the killer cells

10.02.2017

A few days after a viral infection, countless killer cells swarm out to track down and kill infected body cells. In this way, they are highly effective at preventing pathogens from being able to spread further. An international research team has now explained an important mechanism behind building this army. The work under the aegis of the University of Bonn is published in the journal Immunity.

Killer cells – called cytotoxic T cells in the technical jargon – are somewhat like a well-trained police dog: as long as they don’t know that an infection is currently spreading somewhere in the body, they behave peacefully. They only become active and multiply when forensics rubs a “piece of property” of the pathogen under their nose. Only then do they head out to destroy the intruder.


Once killer cells (red) get wind of an infection, they convene a kind of team of various immunocytes (green or yellow).

© AG Kastenmüller/Universität Bonn

The role of forensics is assumed by the dendritic cells. They patrol around the clock and keep a lookout for molecules that should not actually be inside the body. When they make a find, they present the foreign molecule on their surface. Then they wait for a killer cell, to which they can show their find.

However, there are a great many different killer cells in the body. Each of them specializes in a certain foreign substance and can only be activated by a specific one. It thus usually takes a little time until the right bloodhound comes across the dendritic cell. But then things happen quickly: the killer cell begins to divide rapidly. Within a couple of days, an army of special forces is thus created, which can advance towards the pathogen.

Cooperation at a cellular level

“We have investigated what has to happen so that the killer cells multiply as effectively as possible,” explains Prof. Wolfgang Kastenmüller. The scientists at the Institute of Experimental Immunology at the University of Bonn led a study involving researchers from Japan, the USA, Italy and Germany. “Until now, it was thought that contact with the dendritic cell was sufficient here. However, we were able to show that the killer cell first forms a kind of team by ordering up other cell types in a targeted way.

Immediately after instruction by a dendritic cell, the killer cell thus triggers a kind of chemical help signal. Images from a special microscope show for the first time how specialized cells of the body’s defenses then head towards it. Upon arrival, these helpers set various immune processes in motion. Only in this way is the killer cell fully activated.

This now begins to divide significantly. What’s more, the arising army differentiates itself: some cells become particularly strong, but short-lived, killers. Others, meanwhile, become a kind of memory cell, which can be activated quickly in the event of another infection.

“The killer cell thus first creates a very specific microenvironment,” emphasizes Kastenmüller. “This is essential for a coordinated and strong immune defense mechanism.” The scientists hope that their fundamental work will open up new possibilities over the long term for further improving vaccinations against viruses or tumors.

Publication: A. Brewitz et al.: CD8+ T cells orchestrate pDC – XCR1+ dendritic cell spatial and functional cooperativity to optimize priming; Immunity; DOI: 10.1016/j.immuni.2017.01.003

Contact:

Prof. Wolfgang Kastenmüller
Institute of Experimental Immunology
University of Bonn
Tel. +49 (0)228/28711040
E-mail: wkastenm@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>