Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased levels of radon in Pennsylvania homes correspond to onset of fracking

09.04.2015

Levels of radon, a known carcinogen, rising since 2004, around the time that drilling for a new type of natural gas well began

Johns Hopkins Bloomberg School of Public Health researchers say that levels of radon in Pennsylvania homes - where 42 percent of readings surpass what the U.S. government considers safe - have been on the rise since 2004, around the time that the fracking industry began drilling natural gas wells in the state.

The researchers, publishing online April 9 in Environmental Health Perspectives, also found that buildings located in the counties where natural gas is most actively being extracted out of Marcellus shale have in the past decade seen significantly higher readings of radon compared with buildings in low-activity areas. There were no such county differences prior to 2004. Radon, an odorless radioactive gas, is considered the second-leading cause of lung cancer in the world after smoking.

"One plausible explanation for elevated radon levels in people's homes is the development of thousands of unconventional natural gas wells in Pennsylvania over the past 10 years," says study leader Brian S. Schwartz, MD, a professor in the Department of Environmental Health Sciences at the Bloomberg School. "These findings worry us."

The study, conducted with Pennsylvania's Geisinger Health System, analyzed more than 860,000 indoor radon measurements included in a Pennsylvania Department of Environment Protection database from 1989 to 2013. Radon levels are often assessed when property is being bought or sold; much of the study data came from such measurements. The researchers evaluated associations of radon concentrations with geology, water source, season, weather, community type and other factors.

Between 2005 and 2013, 7,469 unconventional natural gas wells were drilled in Pennsylvania using hydraulic fracturing ("fracking") to liberate natural gas from shale. Up until recently, most natural gas wells were created by drilling vertically into porous zones of rock formations like sandstone to release the gas.

These are known as conventional natural gas wells. In recent years, there has been a huge uptick in the drilling of unconventional natural gas wells in 18 states throughout the country. In contrast to the conventional wells, gas is not sitting in shale waiting to be pumped out. Instead, the gas is contained in the shale, which needs to be broken apart to release large volumes of natural gas.

This is done by first drilling deeper into the ground vertically and again horizontally. Then, in the fracking process, millions of gallons of water containing proprietary chemicals are pumped in to help extract the gas.

The disruptive process that brings gas to the surface can also bring heavy metals and organic and radioactive materials such as radium-226, which decays into radon. Most indoor radon exposure has been linked to the diffusion of gas from soil. It is also found in well water, natural gas and ambient air.

Averaged over the whole study period, houses and other buildings using well water had a 21 percent higher concentration of radon than those using municipal water. Houses and buildings located in rural and suburban townships, where most of the gas wells are, had a 39 percent higher concentration of radon than those in cities.

Since radon is naturally occurring, in areas without adequate ventilation -- like many basements -- radon can accumulate to levels that substantially increase the risk of lung cancer.

The study's first author is Joan A. Casey, a Robert Wood Johnson Foundation Health & Society Scholar at the University of California-Berkeley and San Francisco, who earned her PhD at the Bloomberg School in 2014. She says it is unclear whether the excess radon in people's homes is coming from radium getting into well water through the fracking process, being released into the air near the gas wells or whether natural gas from shale contains more radon than conventional gas and it enters homes through cooking stoves and furnaces. Another possibility, she says, is that in the past decade buildings have been more tightly sealed, potentially trapping radon that gets inside and leading to increased indoor radon levels. In the past, most radon has entered homes through foundation cracks and other openings into buildings.

"By drilling 7,000 holes in the ground, the fracking industry may have changed the geology and created new pathways for radon to rise to the surface," Casey says. "Now there are a lot of potential ways that fracking may be distributing and spreading radon."

Natural gas typically travels via pipeline at 10 miles per hour, meaning radon can go statewide in one day. Radon has a half-life of about four days, meaning it has lost 95 percent of its radioactivity after 20 days.

The state of Pennsylvania recently took a comprehensive set of measurements near 34 gas wells, including air samples for radon near four wells, which did not show high levels of the radioactive gas. But the researchers say their study, which looks at levels in hundreds of thousands of homes and other buildings, is a better way to assess the potential cumulative impacts of all the wells.

"I don't think we can ignore these findings," Schwartz says. "Our study can be improved by including information that was not available for our analysis, such as whether natural gas is used for heating and cooking, whether there is any radon remediation in the building, and general condition of the building foundation. But these next studies should be done because the number of drilled wells is continuing to increase and the possible problem identified by our study is not going away."

###

"Predictors of Indoor Radon Concentrations in Pennsylvania 1989-2013" was written by Joan A. Casey, Elizabeth L. Ogburn, Sara G. Rasmussen, Jennifer K. Irving, Jonathan Pollak, Paul A. Locke and Brian S. Schwartz. On April 9, this article will be available to download for free at http://ehp.niehs.nih.gov/1409014.

The research was supported in part by the National Institutes of Health's National Institute of Environmental Health Sciences (R21 ES023675).

Media Contact

Barbara Benham
bbenham1@jhu.edu
410-614-6029

 @JohnsHopkinsSPH

http://www.jhsph.edu 

Barbara Benham | EurekAlert!

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>