Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased levels of radon in Pennsylvania homes correspond to onset of fracking

09.04.2015

Levels of radon, a known carcinogen, rising since 2004, around the time that drilling for a new type of natural gas well began

Johns Hopkins Bloomberg School of Public Health researchers say that levels of radon in Pennsylvania homes - where 42 percent of readings surpass what the U.S. government considers safe - have been on the rise since 2004, around the time that the fracking industry began drilling natural gas wells in the state.

The researchers, publishing online April 9 in Environmental Health Perspectives, also found that buildings located in the counties where natural gas is most actively being extracted out of Marcellus shale have in the past decade seen significantly higher readings of radon compared with buildings in low-activity areas. There were no such county differences prior to 2004. Radon, an odorless radioactive gas, is considered the second-leading cause of lung cancer in the world after smoking.

"One plausible explanation for elevated radon levels in people's homes is the development of thousands of unconventional natural gas wells in Pennsylvania over the past 10 years," says study leader Brian S. Schwartz, MD, a professor in the Department of Environmental Health Sciences at the Bloomberg School. "These findings worry us."

The study, conducted with Pennsylvania's Geisinger Health System, analyzed more than 860,000 indoor radon measurements included in a Pennsylvania Department of Environment Protection database from 1989 to 2013. Radon levels are often assessed when property is being bought or sold; much of the study data came from such measurements. The researchers evaluated associations of radon concentrations with geology, water source, season, weather, community type and other factors.

Between 2005 and 2013, 7,469 unconventional natural gas wells were drilled in Pennsylvania using hydraulic fracturing ("fracking") to liberate natural gas from shale. Up until recently, most natural gas wells were created by drilling vertically into porous zones of rock formations like sandstone to release the gas.

These are known as conventional natural gas wells. In recent years, there has been a huge uptick in the drilling of unconventional natural gas wells in 18 states throughout the country. In contrast to the conventional wells, gas is not sitting in shale waiting to be pumped out. Instead, the gas is contained in the shale, which needs to be broken apart to release large volumes of natural gas.

This is done by first drilling deeper into the ground vertically and again horizontally. Then, in the fracking process, millions of gallons of water containing proprietary chemicals are pumped in to help extract the gas.

The disruptive process that brings gas to the surface can also bring heavy metals and organic and radioactive materials such as radium-226, which decays into radon. Most indoor radon exposure has been linked to the diffusion of gas from soil. It is also found in well water, natural gas and ambient air.

Averaged over the whole study period, houses and other buildings using well water had a 21 percent higher concentration of radon than those using municipal water. Houses and buildings located in rural and suburban townships, where most of the gas wells are, had a 39 percent higher concentration of radon than those in cities.

Since radon is naturally occurring, in areas without adequate ventilation -- like many basements -- radon can accumulate to levels that substantially increase the risk of lung cancer.

The study's first author is Joan A. Casey, a Robert Wood Johnson Foundation Health & Society Scholar at the University of California-Berkeley and San Francisco, who earned her PhD at the Bloomberg School in 2014. She says it is unclear whether the excess radon in people's homes is coming from radium getting into well water through the fracking process, being released into the air near the gas wells or whether natural gas from shale contains more radon than conventional gas and it enters homes through cooking stoves and furnaces. Another possibility, she says, is that in the past decade buildings have been more tightly sealed, potentially trapping radon that gets inside and leading to increased indoor radon levels. In the past, most radon has entered homes through foundation cracks and other openings into buildings.

"By drilling 7,000 holes in the ground, the fracking industry may have changed the geology and created new pathways for radon to rise to the surface," Casey says. "Now there are a lot of potential ways that fracking may be distributing and spreading radon."

Natural gas typically travels via pipeline at 10 miles per hour, meaning radon can go statewide in one day. Radon has a half-life of about four days, meaning it has lost 95 percent of its radioactivity after 20 days.

The state of Pennsylvania recently took a comprehensive set of measurements near 34 gas wells, including air samples for radon near four wells, which did not show high levels of the radioactive gas. But the researchers say their study, which looks at levels in hundreds of thousands of homes and other buildings, is a better way to assess the potential cumulative impacts of all the wells.

"I don't think we can ignore these findings," Schwartz says. "Our study can be improved by including information that was not available for our analysis, such as whether natural gas is used for heating and cooking, whether there is any radon remediation in the building, and general condition of the building foundation. But these next studies should be done because the number of drilled wells is continuing to increase and the possible problem identified by our study is not going away."

###

"Predictors of Indoor Radon Concentrations in Pennsylvania 1989-2013" was written by Joan A. Casey, Elizabeth L. Ogburn, Sara G. Rasmussen, Jennifer K. Irving, Jonathan Pollak, Paul A. Locke and Brian S. Schwartz. On April 9, this article will be available to download for free at http://ehp.niehs.nih.gov/1409014.

The research was supported in part by the National Institutes of Health's National Institute of Environmental Health Sciences (R21 ES023675).

Media Contact

Barbara Benham
bbenham1@jhu.edu
410-614-6029

 @JohnsHopkinsSPH

http://www.jhsph.edu 

Barbara Benham | EurekAlert!

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>