Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In aging, one size does not fit all

15.12.2015

New research from the International Institute for Applied Systems Analysis (IIASA) provides a suite of measurements that could replace conventional measures of age, supporting smarter policies for retirement and health care.

Conventional measures of age usually define people as “old” at one chronological age, often 65. In many countries around the world, age 65 is used as a cutoff for everything from pension age to health care systems, as the basis of a demographic measure known as the “old-age dependency ratio,” which defines everyone over 65 as depending on the population between ages 20 and 65.


© Silent 47 Images | Dreamstime.com

In new study in the journal Population and Development Review, IIASA researchers Warren Sanderson and Sergei Scherbov provide new measures to replace the old-age dependency ratio.

“There are better measures available for every aspect of population aging to which it is applied,” says Sanderson. “Aging is a suite of multidimensional phenomena. In this study we deal with a number of aspects of aging and show that better measures exist for all of them.”

Previous research by the team [ www.reaging.org ]has shown that defining people as “old” at age 65 no longer fits the real-world data, as people live longer, healthier lives around the world. The new study pulls together a collection of demographic methods that replace the old-age dependency ratio for a variety of purposes, providing more useful information for policymakers as well as demographic research.

For example, health care costs on average increase significantly for people in their last few years of life. Yet as people live longer, those last few years come later and later, and people may stay healthy well into their 60s and 70s. When projections of future health care costs use age 65 as the cutoff, they may massively overestimate future costs to a health care system. The new study therefore proposes a health-care specific calculation that takes into account the postponement of deaths that occur because of the increase in life expectancy.

The old-age dependency ratio is also based in part on traditional retirement age being around 65. But today, a growing number of people over 65 are still working, and in response to increased life expectancy, many countries have begun increasing their public pension ages. Yet increasing pension ages can be unfair to younger generations, who may work longer and get less retirement money than previous generations.

The study includes a new proposal for an “intergenerationally equitable pension age,” in which each generation receives as much in pension payouts as they pay in, the average pension as a percentage of salary is the same for all generations, and the pension tax remains the same.

“There are many policy issues for which good estimates of the future consequences of aging are needed,” says Scherbov. “In some instances, the large exaggerations in the extent of aging produced by the conventional measures could lead to inappropriate policies.”

Further information and details on the new measures are available at: www.reaging.org/indicators

Reference
Sanderson W, Scherbov S (2015). Are we overly dependent on conventional dependency ratios? Population and Development Review. 41(4): 687–708. 15 December 2015. http://onlinelibrary.wiley.com/doi/10.1111/j.1728-4457.2015.00091.x/abstract

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft
Further information:
http://www.iiasa.ac.at

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>