Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In aging, one size does not fit all

15.12.2015

New research from the International Institute for Applied Systems Analysis (IIASA) provides a suite of measurements that could replace conventional measures of age, supporting smarter policies for retirement and health care.

Conventional measures of age usually define people as “old” at one chronological age, often 65. In many countries around the world, age 65 is used as a cutoff for everything from pension age to health care systems, as the basis of a demographic measure known as the “old-age dependency ratio,” which defines everyone over 65 as depending on the population between ages 20 and 65.


© Silent 47 Images | Dreamstime.com

In new study in the journal Population and Development Review, IIASA researchers Warren Sanderson and Sergei Scherbov provide new measures to replace the old-age dependency ratio.

“There are better measures available for every aspect of population aging to which it is applied,” says Sanderson. “Aging is a suite of multidimensional phenomena. In this study we deal with a number of aspects of aging and show that better measures exist for all of them.”

Previous research by the team [ www.reaging.org ]has shown that defining people as “old” at age 65 no longer fits the real-world data, as people live longer, healthier lives around the world. The new study pulls together a collection of demographic methods that replace the old-age dependency ratio for a variety of purposes, providing more useful information for policymakers as well as demographic research.

For example, health care costs on average increase significantly for people in their last few years of life. Yet as people live longer, those last few years come later and later, and people may stay healthy well into their 60s and 70s. When projections of future health care costs use age 65 as the cutoff, they may massively overestimate future costs to a health care system. The new study therefore proposes a health-care specific calculation that takes into account the postponement of deaths that occur because of the increase in life expectancy.

The old-age dependency ratio is also based in part on traditional retirement age being around 65. But today, a growing number of people over 65 are still working, and in response to increased life expectancy, many countries have begun increasing their public pension ages. Yet increasing pension ages can be unfair to younger generations, who may work longer and get less retirement money than previous generations.

The study includes a new proposal for an “intergenerationally equitable pension age,” in which each generation receives as much in pension payouts as they pay in, the average pension as a percentage of salary is the same for all generations, and the pension tax remains the same.

“There are many policy issues for which good estimates of the future consequences of aging are needed,” says Scherbov. “In some instances, the large exaggerations in the extent of aging produced by the conventional measures could lead to inappropriate policies.”

Further information and details on the new measures are available at: www.reaging.org/indicators

Reference
Sanderson W, Scherbov S (2015). Are we overly dependent on conventional dependency ratios? Population and Development Review. 41(4): 687–708. 15 December 2015. http://onlinelibrary.wiley.com/doi/10.1111/j.1728-4457.2015.00091.x/abstract

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft
Further information:
http://www.iiasa.ac.at

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>