Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune factor allows viral infections to become chronic

08.03.2016

Many viral diseases tend to become chronic – including infections with the HI virus. In persons affected, the immune response is not sufficient to eliminate the virus permanently. Scientists at the University of Bonn have now identified an immune factor which is partially responsible for this. Their results give rise to hopes for new therapeutic approaches. The work, which included researchers from the University of Cologne and the Technical University of Munich, is being published in the renowned journal "Nature Immunology."

The HI virus triggers the immunodeficiency disease AIDS. The infection has a chronic course – the immune system is not able to get rid of the pathogen. This is due among other things to the fact that the virus directly attacks and destroys certain immune cells known as helper T cells.


Prof. Dr. Joachim L. Schultze and Dr. Marc Beyer (from left) from LIMES Institute of University of Bonn.

(c) Photo: Barbara Frommann/Uni Bonn


In the lab: Dr. Zeinab Abdullah from the Institute of Experimental Immunology at University Hospital Bonn.

(c) Photo: Uniklinik RWTH Aachen

However, many helper T cells are not affected by the virus at all. Nonetheless their function is impaired in the case of AIDS. Normally, helper T cells secrete inflammatory messengers during an infection. As a result of this chemical distress call, killer T cells (the body's own defense troops) become ready to fight and are guided to the site. By contrast, in AIDS and other chronic infections, the helper T cells remain silent. But why is that?

To answer this question, the researchers initially analyzed which genes in the silent helper cells of HIV patients are active. Result: In chronic inflammation, the immune function of the helper T cells is inhibited by various signaling pathways. These signaling pathways in turn are apparently controlled by a single molecule known as tumor necrosis factor (TNF).

This factor appears to be responsible for the weak immune response. "We investigated mice suffering from a chronic viral infection similar to an HIV infection and inactivated the TNF molecule in them," explains Dr. Marc Beyer from Life and Medical Sciences Institute (LIMES) of the University of Bonn. "As a result, the helper T cells worked normally once again. After ten days, the animals had completely eliminated the virus; they were healthy."

Misdirected protective function

Paradoxically, the tumor necrosis factor has exactly the opposite effect in acute viral attacks: It brings the immune system up to full speed and additionally ensures that cells infected with the virus commit suicide. "Therefore, in an acute infection, large quantities of TNF are formed very rapidly," says Dr. Zeinab Abdullah from the Institute of Experimental Immunology at the University Hospital Bonn. "In chronic infections, on the other hand, the body secretes small amounts of TNF over a long period of time. This appears to cause the helper T cells to shut down to some extent."

The researchers suspect that this is a protective mechanism. A prolonged strong immune reaction can in particular destroy healthy tissues as well – with life-threatening consequences. TNF could act as a type of emergency brake which prevents this. Exactly what the tumor necrosis factor does on a molecular level is still largely unknown. The scientists involved now want to examine this question in detail.

The results may establish new therapeutic options in the medium term. Thus there are drugs which inhibit the effect of TNF. These TNF blockers are used in the treatment of autoimmune diseases such as rheumatism, for example. They are to prevent defense cells from attacking the body itself. "Among other things, we want to investigate what effects these drugs have in rheumatism patients who are additionally suffering from a chronic viral infection," says Marc Beyer.

Publication: Tumor-necrosis factor impairs CD4+ T cell-mediated immunological control in chronic viral infection; Nature Immunology; DOI: 10.1038/ni.3399

Media contact information:

Dr. Marc Beyer
LIMES Institute
University of Bonn
Tel. ++49-228-7362792
Email: marc.beyer@uni-bonn.de

Dr. Zeinab Abdullah
Institute of Experimental Immunology
University Hospital Bonn
Tel. ++49-228-28711038
Email: Zeinab.Abdullah@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>