Immune factor allows viral infections to become chronic

Prof. Dr. Joachim L. Schultze and Dr. Marc Beyer (from left) from LIMES Institute of University of Bonn. (c) Photo: Barbara Frommann/Uni Bonn

The HI virus triggers the immunodeficiency disease AIDS. The infection has a chronic course – the immune system is not able to get rid of the pathogen. This is due among other things to the fact that the virus directly attacks and destroys certain immune cells known as helper T cells.

However, many helper T cells are not affected by the virus at all. Nonetheless their function is impaired in the case of AIDS. Normally, helper T cells secrete inflammatory messengers during an infection. As a result of this chemical distress call, killer T cells (the body's own defense troops) become ready to fight and are guided to the site. By contrast, in AIDS and other chronic infections, the helper T cells remain silent. But why is that?

To answer this question, the researchers initially analyzed which genes in the silent helper cells of HIV patients are active. Result: In chronic inflammation, the immune function of the helper T cells is inhibited by various signaling pathways. These signaling pathways in turn are apparently controlled by a single molecule known as tumor necrosis factor (TNF).

This factor appears to be responsible for the weak immune response. “We investigated mice suffering from a chronic viral infection similar to an HIV infection and inactivated the TNF molecule in them,” explains Dr. Marc Beyer from Life and Medical Sciences Institute (LIMES) of the University of Bonn. “As a result, the helper T cells worked normally once again. After ten days, the animals had completely eliminated the virus; they were healthy.”

Misdirected protective function

Paradoxically, the tumor necrosis factor has exactly the opposite effect in acute viral attacks: It brings the immune system up to full speed and additionally ensures that cells infected with the virus commit suicide. “Therefore, in an acute infection, large quantities of TNF are formed very rapidly,” says Dr. Zeinab Abdullah from the Institute of Experimental Immunology at the University Hospital Bonn. “In chronic infections, on the other hand, the body secretes small amounts of TNF over a long period of time. This appears to cause the helper T cells to shut down to some extent.”

The researchers suspect that this is a protective mechanism. A prolonged strong immune reaction can in particular destroy healthy tissues as well – with life-threatening consequences. TNF could act as a type of emergency brake which prevents this. Exactly what the tumor necrosis factor does on a molecular level is still largely unknown. The scientists involved now want to examine this question in detail.

The results may establish new therapeutic options in the medium term. Thus there are drugs which inhibit the effect of TNF. These TNF blockers are used in the treatment of autoimmune diseases such as rheumatism, for example. They are to prevent defense cells from attacking the body itself. “Among other things, we want to investigate what effects these drugs have in rheumatism patients who are additionally suffering from a chronic viral infection,” says Marc Beyer.

Publication: Tumor-necrosis factor impairs CD4+ T cell-mediated immunological control in chronic viral infection; Nature Immunology; DOI: 10.1038/ni.3399

Media contact information:

Dr. Marc Beyer
LIMES Institute
University of Bonn
Tel. ++49-228-7362792
Email: marc.beyer@uni-bonn.de

Dr. Zeinab Abdullah
Institute of Experimental Immunology
University Hospital Bonn
Tel. ++49-228-28711038
Email: Zeinab.Abdullah@ukb.uni-bonn.de

Media Contact

Johannes Seiler idw - Informationsdienst Wissenschaft

More Information:

http://www.uni-bonn.de

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors