Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to wake a sleeping cancer cell -- and why you might want to

03.12.2015

Cancer cells that lie 'snoozing' in the skeleton can be awakened - or left to slumber on - by changes in the bone that surrounds them, Australian scientists have shown. In a world first, researchers from the Garvan Institute of Medical Research have used state-of-the-art microscopy techniques to watch cancer cells sleep within living bone over a period of months. They show that cancer cells can be 'woken up' when bone tissue is broken down around them, suggesting new possibilities for treating metastatic cancer in bone.

In several cancers (including breast and prostate), cancer cells can spread from the original tumour site into bone. Once there, they settle in 'for the long haul', remaining inactive for months or even many years. Eventually, though, some of these cells can 'wake up' and begin dividing, forming secondary cancers (or metastases) in bone and dramatically worsening the prognosis of cancer patients.


These are time-lapse images from real-time two-photon intravital microscopy in a living mouse, showing a tumor cell (green) colonising bone (blue).

Credit: Garvan Institute of Medical Research

"Once a cancer spreads to bone, it becomes notoriously difficult to treat," says Professor Peter Croucher, Head of Garvan's Bone Biology Division and the study's lead investigator. "So, it's important to establish exactly what wakes those cells in bone. Is it some signal within the cells themselves, or is it a change in their environment?

"You could compare it to how we ourselves wake in the morning. Some of us wake naturally, but others need an external signal, whether it's an alarm clock or sunshine streaming through the window."

The research team set out to discover which scenario holds true for cancer cells in bone. Their research is published today in the leading journal Nature Communications.

Using a groundbreaking technique called intravital two-photon microscopy, the researchers tracked the fate of sleeping cancer cells in the tibia (the main bone in the long part of the leg) of a living mouse. They introduced cells from multiple myeloma (a cancer of blood cells that arises in bone) into the mouse, and watched as a small number of the cells lodged in the tibia and 'went to sleep'. These vanishingly rare sleeping cells could be detected because they contained a fluorescent dye that was lost rapidly from dividing (wakeful) cells.

Dr Tri Phan, who co-led the study, says, "Because we were looking at a long bone like a tibia (rather than the skull, which is more commonly studied), we could watch the same sleeping cancer cells, in the same bone, in the same mouse, over a long period of time - and this is something that hasn't been done before."

Prof Croucher says that studying the same set of cells over a period of months gave vital clues about what caused them to reactivate. "Because we've done it this way, we can show that there are a great many dormant cells - yet only some of them get woken up, and those that do wake, wake at different times. We even saw some cells that woke then went back to sleep again.

"The fact that these myeloma cells behave so differently, despite coming from the same cancer cell line, gave us our first clue that it is a signal from outside the cells that is controlling when they wake."

The next challenge was to work out the precise nature of the 'wake-up call' from bone. Dr Michelle McDonald, a bone biologist on the research team, says, "In this study, we've shown that bone's dynamic process of building up and breaking down can send signals to cancer cells to stay sleeping or to wake.

"Cells known as 'osteoblasts' are known to help build new bone, while 'osteoclast' cells break down bone.

"We were able to show that myeloma cells are usually kept asleep by close association with a layer of osteoblast-like cells, called bone-lining cells, in the endosteum (an internal surface within bone). The bone-lining cells are essentially inactive, so we can think of them as providing a quiet environment in which myeloma cells sleep undisturbed.

"Crucially, we can wake those myeloma cells by activating osteoclasts, which break down bone tissue. We think the osteoclasts are physically changing the local environment of the cancer cells and waking them up in the process - as if they were literally throwing them out of bed.

"We know that bone remodelling is going on in all of us - so a myeloma cell could be woken in an essentially random fashion, by having its local environment remodelled by osteoclasts. Essentially, a cancer cell could be woken by being in the wrong place at the wrong time."

What does this mean for treating secondary cancers in bone? Prof Croucher says, "Now we can see that the cancer cells are woken by changes in the surrounding bone, we can think in a whole new way about treating bone metastasis - and there are two treatment approaches in particular that have promise.

"The first is that we could inhibit the breakdown of bone by osteoclasts so as to keep cancer cells in long-term hibernation. In fact, there are already drugs that can do this, such as bisphosphonates (used to protect bone in individuals with osteoporosis), and there's already evidence that these drugs do improve survival in breast cancer patients.

"The other, more radical, option is to do the opposite - to wake the sleeping cells by activating osteoclasts and driving the breakdown of bone. Most cancer treatments target active, dividing cells, so waking the sleeping cells should make them susceptible to those therapies - and, ultimately, could eradicate any residual disease."

Media Contact

Meredith Ross
m.ross@garvan.org.au
043-987-3258

 @GarvanInstitute

http://www.garvan.org.au/ 

Meredith Ross | EurekAlert!

More articles from Health and Medicine:

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>