Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Does Prostate Cancer Form?

19.12.2014

The cause of prostate cancer may be linked to Parkinson’s disease through a common enzyme

Prostate cancer affects more than 23,000 men this year in the USA however the individual genes that initiate prostate cancer formation are poorly understood. Finding an enzyme that regulates this process could provide excellent new prevention approaches for this common malignancy.

Sirtuin enzymes have been implicated in neurodegeneration, obesity, heart disease, and cancer. Research published online Thursday (Dec 18th) in The American Journal of Pathology show the loss of one of sirtuin (SIRT1) drives the formation of early prostate cancer (prostatic intraepithelial neoplasia) in mouse models of the disease.

"Using genetic deletion we found that SIRT1 normally restrains prostatic intraepithelial neoplasia in animals. Therefore too little SIRT1 may be involved in the cellular processes that starts human prostate cancer," said Dr. Richard Pestell, M.D., Ph.D., MBA, executive Vice President of Thomas Jefferson University and Director of the Sidney Kimmel Cancer Center.

“As we had shown that gene therapy based re expression of SIRT1 can block human prostate cancer tumor growth, and SIRT1 is an enzyme which can be targeted, this may be an important new target for prostate cancer prevention.”

The researchers led by Dr. Pestell, created a mouse model that lacked SIRT1 and noticed that these mice were more likely to develop an early form of prostate cancer called prostatic intraepithelial neoplasia (PIN).

Other researchers had shown that SIRT1 can defend the cell against damage from free radicals. Pestell’s group took the work further by showing that in this prostate cancer model, free radicals built up in cells lacking SIRT1. They showed that normally, SIRT1 proteins help activate a mitochondrial protein called SOD2, in turn activating those proteins to keep free-radical levels in check. When SIRT1 level are diminished, SOD2 is no longer effective at removing free radicals, allowing a dangerous build up in the cells, and leading to PIN.

“The next step,” says first author Gabriele DiSante, Ph.D., a postdoctoral fellow in the department of Cell Biology at Jefferson, “is to determine if this is also important in the development of human prostate cancer.”

This work was supported in part by awards from the National Institutes of Health R01CA70896, R01CA75503 and R01CA86072. Work conducted at the Sidney Kimmel Cancer Center was supported by the NIH Cancer Center Core grant P30CA56036. This project was partially supported by the China Scholarship Council. This project is funded in part by the Pennsylvania Department of Health grant. The Department specifically disclaims responsibility for any analyses, interpretations or conclusions.

The authors declare no conflicts of interest.
For more information, contact Edyta Zielinska, 215-955-5291, edyta.zielinska@jefferson.edu.

About Jefferson — Health is all we do.
Thomas Jefferson University, Thomas Jefferson University Hospitals and Jefferson University Physicians are partners in providing the highest-quality, compassionate clinical care for patients, educating the health professionals of tomorrow, and discovering new treatments and therapies that will define the future of healthcare. Thomas Jefferson University enrolls more than 3,600 future physicians, scientists and healthcare professionals in the Sidney Kimmel Medical College (SKMC); Jefferson Schools of Health Professions, Nursing, Pharmacy, Population Health; and the Graduate School of Biomedical Sciences, and is home of the National Cancer Institute (NCI)-designated Sidney Kimmel Cancer Center. Jefferson University Physicians is a multi-specialty physician practice consisting of over 650 SKMC full-time faculty. Thomas Jefferson University Hospitals is the largest freestanding academic medical center in Philadelphia. Services are provided at five locations — Thomas Jefferson University Hospital and Jefferson Hospital for Neuroscience in Center City Philadelphia; Methodist Hospital in South Philadelphia; Jefferson at the Navy Yard; and Jefferson at Voorhees in South Jersey.

Article reference: G. Di Sante et al., “Loss of SIRT1 Promotes Prostatic Intraepithelial Neoplasia, Reduces Mitophagy and Delays PARK2 Translocation to Mitochondria,” Am J Pathol., 2014.

Contact Information
Edyta Zielinska
Science Writer/Media Relations Representative
edyta.zielinska@jefferson.edu
Phone: 215-955-5291

Edyta Zielinska | newswise
Further information:
http://www.jefferson.edu/

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>