Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High speed video recording precisely measures blood cell velocity


Scientists from ITMO University created a high-speed video capillaroscopy system that enables direct measurement of red blood cell velocity. Coupled with sophisticated software, the system can raise the bar on the accuracy of vascular condition assessment. Such a system can come in useful for monitoring how efficient certain therapies are. The results of the research were published in Optics and Lasers in Engineering.

Capillaroscopy systems are commonly used either to determine the shape and size of a single capillary or to examine some specific part of a capillary network. Geometric patterns that emerge from capillary structures, as well as blood cell velocity, can reflect the condition of the entire vascular system. Although blood cell velocity is among crucial diagnostic parameters, so far its direct and precise measurement was not an easy task.

This is a picture of nailfold capillary network obtained by new system.

Credit: Provided by leading author IgorGurov

In the study, researchers from ITMO University applied high speed video recording of red blood cells in the capillary to measure blood flow velocity. The system relies on the combination of optical equipment with specially designed data processing software.

A microscope coupled with a high speed video camera captures the image of capillaries. The frame sequence is then processed in order to restore the capillaries' shape and configuration as well as to determine the distance that blood cells cover per time unit. Besides being useful for diagnostics, such data may help to assess whether a certain therapy is efficient or not.

"In addition to shape and diameter of each capillary, we can determine how fast red blood cells flow through each capillary in observed capillary net," comments Igor Gurov, lead author and head of the Center For Computational Optics, Photonics and Imaging at ITMO University. "Although relatively simple, our device is capable of providing reliable data that can be extremely useful for disease patterns recognition. What is more, such a diagnostic procedure is absolutely painless, safe and comfortable for patients."

Retrieving blood flow velocity data is of paramount importance when it comes to such diseases as diabetes or coronary heart disease. "Flow velocity is a primary factor in estimating the condition of any tissue by its blood supply. For instance, in diabetes the circulation speed may alter even though blood vessels generally appear to be normal. Our main task now is to use the system to address socially significant diseases. In particular, the system can be an effective tool for studying what happens in blood vessels during coronary heart disease and how drugs affect blood flow recovery," explains one of the authors Nikita Margariants.

By and large, other methods of measuring blood flow velocity cannot provide highly accurate data and do not allow for long-term measurements. "There are alternative devices that can only give a rough average estimate of blood cell velocity," comments Mikhail Volkov, researcher at the Center For Computational Optics, Photonics and Imaging.

The authors emphasize that the development of image recording and processing facilities will significantly expand the capabilities of the new system. "As new video cameras, exchange buses and software appear, this method will become better and more accurate. Time is on our side," points out Mikhail Volkov.



"High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells"

I. Gurov, M. Volkov, N. Margaryants et al.

Optics and Lasers in Engineering Sep. 19, 2017

Media Contact

Dmitry Malkov


Dmitry Malkov | EurekAlert!

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>