Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut model HuMiX works like the real thing

11.05.2016

New human microbiome research tool

One of the most complex human organs is the digestive tract: Here, the body comes into contact with all manner of diet-derived compounds and with countless bacteria.


The model of the human is representative of the actual conditions and processes that occur within human intestines.

Credit: University of Luxembourg, scienceRELATIONS.jpeg

Scientists from the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg in collaboration with colleagues at the Luxembourg Institute of Health and the University of Arizona in the United States have now proven that a model of the human gut they have developed and patented - HuMiX - is representative of the actual conditions and processes that occur within our intestines.

With HuMiX, the researchers can analyse the complex interactions between human cells and bacteria, predict their effects on health or disease onset, and study the action of probiotics and drugs. The researchers publish their findings today in the journal Nature Communications (DOI: 10.1038/NCOMMS11535).

In HuMiX, the "Human Microbial Cross-talk" model, human intestinal cells and bacteria can be cultivated together in a very small space under representative conditions. The apparatus, no bigger than a beer mat, consists of three chambers. The top chamber is the supply level, from which nutrients continuously flow down to the cell cultures below. Human cells grow on a very thin membrane in the middle chamber, while bacteria grow in the lowest chamber.

"With HuMiX, we can observe interaction of bacteria in real-time as they communicate with human intestinal cells," says Prof. Paul Wilmes, head of the LCSB Ecosystems Biology Group and inventor of HuMiX.

For their tests confirming the validity of HuMiX experiments, the researchers employed pure cultures of various bacterial strains. "Using cutting-edge analytical methods established at the LCSB, we then studied how the gene activity and metabolism of intestinal epithelial cells change depending on the bacterial strain used in HuMiX," Wilmes explains.

"A comparison of our data with results from other research groups who obtained theirs from humans or animals showed strong agreement." That means HuMiX delivers a very accurate portrayal of the cellular and molecular processes taking place in the human gut. "With HuMiX we can also study processes so far inaccessible by existing experimental methods," Wilmes adds.

Dr. Pranjul Shah, first author of the publication and co-inventor of the HuMiX device, names one example of a metabolic process the LCSB researchers discovered with HuMiX: "In a co-culture of intestinal cells and a certain strain of the bacterial species Lactobacillus rhamnosus, we determined that production of a messenger of the nervous system, specifically the neurotransmitter gamma-aminobutyric acid or GABA, is stimulated in intestinal cells, indicating a mechanism by which the intestine may be communicating with the brain."

Scientists had already seen evidence of this effect several years earlier in the brain of mice born with a completely sterile gut (which was devoid of all intestinal flora), when their gut was inoculated with similar Lactobacillus strains. "The ability of HuMiX to provide such responses can be attributed to the unique capability of the HuMiX model to allow cultivation of anaerobic bacteria along with human intestinal cells", highlights Shah.

"We can now study these and similar effects at an unprecedented level of precision thanks to HuMiX," Paul Wilmes continues. "There are clues, for example, that inflammatory processes can play a role in the onset of neurodegenerative diseases such as Parkinson's. In HuMiX, we can introduce distinct bacterial species or whole communities into the artificial gut model whether these organisms trigger or slow down inflammation, or even introduce immune cells and neurons together with the bacteria."

In their publication, the scientists present evidence that HuMiX is a suitable tool for understanding a range of molecular processes involved in the interaction between human cells and bacteria. Furthermore, Wilmes sees a benefit not only for basic research, but also for clinical application: "With HuMiX, we can now also analyse how probiotics, dietary compounds or drugs affect human physiology. We expect to see concrete indicators of how these therapeutics need to be refined in order to work better in the future."

###

The HuMiX project has received support from the Luxembourg National Research Fund's ATTRACT, CORE, Inter mobility, Accompanying Measures 2c, Proof-of-Concept and AFR funding programmes.

Media Contact

Thomas Klein
thomas.klein@uni.lu
352-466-644-5148

 @uni_lu

http://www.uni.lu 

Thomas Klein | EurekAlert!

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>