Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Got good fat?

27.04.2016

Brown fat cells can burn fat to generate heat. University of Bonn researchers have discovered a new method to measure the activity of brown fat cells in humans and mice. The researchers showed that microRNA-92a can be used as an indirect measure for the activity of energy consuming brown fat cells. They showed that a small blood sample was sufficient. Results were published in “Nature Communications,” a well-known scientific journal.

People who want to lose weight often encounter boundaries: No matter what diet they try, the pounds won’t drop. Being overweight and obese can have severe health consequences, and has shown to increase a person’s chance of developing type-2-diabetes or cardiovascular diseases.


Prof. Dr. Alexander Pfeifer (right) and Joschka Johannes Buyel Institute of Pharmacology and Toxicology, University of Bonn, have discovered a novel biomarker for brown fat that dissipates energy.

© Photo: Katharina Wislsperger/UKB-UKom

Prof. Dr. Alexander Pfeifer, head of the Institute of Pharmacology and Toxicology of the University Bonn, has been investigating brown fat in mice for years. He has been trying to understand how to turn unfavored white fat cells into energy-consuming brown ones. Brown fat cells can “burn” excessive energy by producing heat instead of storing fat.

Prof. Pfeifer´s team has discovered multiple signaling cascades and possible drug targets in rodents that are responsible for the conversion from white-energy-storing to brown-energy-consuming fat cells. However, for these basic research findings to become human treatment, clinical trials are needed to discover which drug is most efficient in activating brown fat and has few or no side effects.

These clinical trials are hampered because so far no method is on the market to measure the brown fat activity without health risk and expensive equipment.

Brown fat cells release miR-92a into the circulation

In collaboration with the University Maastricht (Netherlands), Turku (Finland) and the University Hospital Hamburg-Eppendorf, researchers in Prof. Pfeifer’s group found an easy way to display brown fat activity: miR-92a. miRNAs are known to be responsible for the regulation of genes.

The researchers showed for the first time that brown fat cells deliver these microRNAs into the blood by packaging into so-called exosomes, which “can be seen as little packages that are delivered by the brown fat cells through the circulation.” However, Prof. Pfeiffer said, “to whom the packages are delivered is yet unknown.”

Many miRNAs were investigated during the investigation. miR-92a is present in human and mice – importantly – this microRNA is related to brown fat activity. Whenever miR-92a is low in circulation, people can burn a lot of energy with brown fat. To prove the connection in humans, scientists tested 41 participants from Finland and the Netherlands. “We found a significant relation between brown fat activity and miR-92a that needs to be proven in larger cohorts,” said co-first author Joschka Johannes Buyel, a PhD student in Prof. Pfeifer´s lab. Measuring miR-92a would allow for a much more accurate measure of the brown fat activity.

Biomarker might enable for efficacy testing of new pharmaceuticals

“miR-92a seems to be a promising biomarker to test new drugs in the field of weight reduction or transition from white-to-brown fat in humans; this promising biomarker should be tested in larger cohorts” said Prof. Pfeifer. This new method might enable advances in obesity research and related fields.

Contact:

Prof. Dr. Alexander Pfeifer
Institute of Pharmacology and Toxicology
University of Bonn
Tel. ++49-228-28751300
E-Mail: alexander.pfeifer@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>