Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Got good fat?

27.04.2016

Brown fat cells can burn fat to generate heat. University of Bonn researchers have discovered a new method to measure the activity of brown fat cells in humans and mice. The researchers showed that microRNA-92a can be used as an indirect measure for the activity of energy consuming brown fat cells. They showed that a small blood sample was sufficient. Results were published in “Nature Communications,” a well-known scientific journal.

People who want to lose weight often encounter boundaries: No matter what diet they try, the pounds won’t drop. Being overweight and obese can have severe health consequences, and has shown to increase a person’s chance of developing type-2-diabetes or cardiovascular diseases.


Prof. Dr. Alexander Pfeifer (right) and Joschka Johannes Buyel Institute of Pharmacology and Toxicology, University of Bonn, have discovered a novel biomarker for brown fat that dissipates energy.

© Photo: Katharina Wislsperger/UKB-UKom

Prof. Dr. Alexander Pfeifer, head of the Institute of Pharmacology and Toxicology of the University Bonn, has been investigating brown fat in mice for years. He has been trying to understand how to turn unfavored white fat cells into energy-consuming brown ones. Brown fat cells can “burn” excessive energy by producing heat instead of storing fat.

Prof. Pfeifer´s team has discovered multiple signaling cascades and possible drug targets in rodents that are responsible for the conversion from white-energy-storing to brown-energy-consuming fat cells. However, for these basic research findings to become human treatment, clinical trials are needed to discover which drug is most efficient in activating brown fat and has few or no side effects.

These clinical trials are hampered because so far no method is on the market to measure the brown fat activity without health risk and expensive equipment.

Brown fat cells release miR-92a into the circulation

In collaboration with the University Maastricht (Netherlands), Turku (Finland) and the University Hospital Hamburg-Eppendorf, researchers in Prof. Pfeifer’s group found an easy way to display brown fat activity: miR-92a. miRNAs are known to be responsible for the regulation of genes.

The researchers showed for the first time that brown fat cells deliver these microRNAs into the blood by packaging into so-called exosomes, which “can be seen as little packages that are delivered by the brown fat cells through the circulation.” However, Prof. Pfeiffer said, “to whom the packages are delivered is yet unknown.”

Many miRNAs were investigated during the investigation. miR-92a is present in human and mice – importantly – this microRNA is related to brown fat activity. Whenever miR-92a is low in circulation, people can burn a lot of energy with brown fat. To prove the connection in humans, scientists tested 41 participants from Finland and the Netherlands. “We found a significant relation between brown fat activity and miR-92a that needs to be proven in larger cohorts,” said co-first author Joschka Johannes Buyel, a PhD student in Prof. Pfeifer´s lab. Measuring miR-92a would allow for a much more accurate measure of the brown fat activity.

Biomarker might enable for efficacy testing of new pharmaceuticals

“miR-92a seems to be a promising biomarker to test new drugs in the field of weight reduction or transition from white-to-brown fat in humans; this promising biomarker should be tested in larger cohorts” said Prof. Pfeifer. This new method might enable advances in obesity research and related fields.

Contact:

Prof. Dr. Alexander Pfeifer
Institute of Pharmacology and Toxicology
University of Bonn
Tel. ++49-228-28751300
E-Mail: alexander.pfeifer@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>