Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes show the way to better treatment of hepatitis A

23.12.2014

One of the most common causes of hepatitis A (formerly known as infectious hepatitis) is a hepatitis C virus infection in the liver. The disease can be treated medically, but not all patients are cured by the treatment currently available. New research shows that the response to medical treatment depends on genetic factors.

Our best defence against viral infections is the immune system. However, humans are endowed differently in terms of our immune defence. Recent research has shown how our genetic make-up heavily influences our ability to combat viral infections. Surprisingly, it now turns out that some of the genes that are good for the immune system can at the same time impede medical treatment.

Hepatitis C virus (HCV) infection causes chronic inflammation of the liver, which is slowly broken down and in some cases the disease can progress to liver cancer. It is possible to treat the disease with antiviral medicine, but patients react differently to the treatment and not all of them recover.

An international research group led by scientists at Aarhus University, Denmark, has now found out why some patients respond to the treatment, while others do not. The result of the treatment is determined to a very great extent by the individual patient's genetic heritage (genome). To the great surprise of the researchers, it turns out that variations in our genes for the interferon lambda 4 protein (IFNL4) determine whether we respond well or poorly to treatment.

"Our research shows that genetic mutations that reduce the activity of the interferon lambda 4 protein provide patients with a considerably better chance of recovering from the infection. Or to put it another way, a functional interferon lambda 4 protein is harmful during an infection with HCV. This is paradoxical because IFNL4 is an essential part of our immune defence against viral infections, and should therefore have a positive effect," says Associate Professor Rune Hartmann, Department of Molecular Biology and Genetics, Aarhus University.

Paradox in the laboratory

IFNL4 is a member of the family of proteins called interferons (named after their ability to interfere with viruses), which are an essential part of our immune defence against viral infections. They work by activating a cellular programme that combats viral infections and thereby makes the cells resistant to the virus.

The research group's studies show that IFNL4 has a powerful antiviral activity in the laboratory, and behaves in every way like any other member of the interferon family. Even though IFNL4 is antiviral in the laboratory, the research also clearly shows that it has the opposite effect in patients. This is where the paradox arises. The researchers have a possible explanation of why this happens.

"Our hypothesis is that interferon lambda 4 confuses other parts of the immune system and that HCV is able to exploit this," says PhD student Ewa Terczynska-Dyla, who also took part in the research project.

Possibility of better treatment

The research results from Aarhus University indicate that it is possible to develop new treatments for hepatitis that match the individual patient's genome. This could be medicine specifically targeting IFNL4, but could also include modifying the normal treatment, depending on whether the patients have fully functional IFNL4 genes, or have a version with either reduced activity or no activity at all.

The latter group of patients is by far the biggest in Denmark, and they do not require anywhere near as long a period of treatment to recover. This is good for both the patients (because they avoid unnecessary treatment) and the public medical expenses (because HCV medicine is very expensive).

The researchers will now carry out further work to understand the fundamental mechanisms that make the interferon lambda genes so important for our ability to combat hepatitis caused by HCV.

The results will be published in the journal Nature Communications 23 December 2014.

For more information, please contact

Associate Professor Rune Hartmann
Department of Molecular Biology and Genetics
Aarhus University, Denmark
+45 2899 2578
rh@mbg.au.dk

PhD student Ewa Terczynska-Dyla
Department of Molecular Biology and Genetics
Aarhus University, Denmark
+45 8715 6638
ewat@mbg.au.dk

Rune Hartmann | EurekAlert!
Further information:
http://www.au.dk

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>