Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes show the way to better treatment of hepatitis A

23.12.2014

One of the most common causes of hepatitis A (formerly known as infectious hepatitis) is a hepatitis C virus infection in the liver. The disease can be treated medically, but not all patients are cured by the treatment currently available. New research shows that the response to medical treatment depends on genetic factors.

Our best defence against viral infections is the immune system. However, humans are endowed differently in terms of our immune defence. Recent research has shown how our genetic make-up heavily influences our ability to combat viral infections. Surprisingly, it now turns out that some of the genes that are good for the immune system can at the same time impede medical treatment.

Hepatitis C virus (HCV) infection causes chronic inflammation of the liver, which is slowly broken down and in some cases the disease can progress to liver cancer. It is possible to treat the disease with antiviral medicine, but patients react differently to the treatment and not all of them recover.

An international research group led by scientists at Aarhus University, Denmark, has now found out why some patients respond to the treatment, while others do not. The result of the treatment is determined to a very great extent by the individual patient's genetic heritage (genome). To the great surprise of the researchers, it turns out that variations in our genes for the interferon lambda 4 protein (IFNL4) determine whether we respond well or poorly to treatment.

"Our research shows that genetic mutations that reduce the activity of the interferon lambda 4 protein provide patients with a considerably better chance of recovering from the infection. Or to put it another way, a functional interferon lambda 4 protein is harmful during an infection with HCV. This is paradoxical because IFNL4 is an essential part of our immune defence against viral infections, and should therefore have a positive effect," says Associate Professor Rune Hartmann, Department of Molecular Biology and Genetics, Aarhus University.

Paradox in the laboratory

IFNL4 is a member of the family of proteins called interferons (named after their ability to interfere with viruses), which are an essential part of our immune defence against viral infections. They work by activating a cellular programme that combats viral infections and thereby makes the cells resistant to the virus.

The research group's studies show that IFNL4 has a powerful antiviral activity in the laboratory, and behaves in every way like any other member of the interferon family. Even though IFNL4 is antiviral in the laboratory, the research also clearly shows that it has the opposite effect in patients. This is where the paradox arises. The researchers have a possible explanation of why this happens.

"Our hypothesis is that interferon lambda 4 confuses other parts of the immune system and that HCV is able to exploit this," says PhD student Ewa Terczynska-Dyla, who also took part in the research project.

Possibility of better treatment

The research results from Aarhus University indicate that it is possible to develop new treatments for hepatitis that match the individual patient's genome. This could be medicine specifically targeting IFNL4, but could also include modifying the normal treatment, depending on whether the patients have fully functional IFNL4 genes, or have a version with either reduced activity or no activity at all.

The latter group of patients is by far the biggest in Denmark, and they do not require anywhere near as long a period of treatment to recover. This is good for both the patients (because they avoid unnecessary treatment) and the public medical expenses (because HCV medicine is very expensive).

The researchers will now carry out further work to understand the fundamental mechanisms that make the interferon lambda genes so important for our ability to combat hepatitis caused by HCV.

The results will be published in the journal Nature Communications 23 December 2014.

For more information, please contact

Associate Professor Rune Hartmann
Department of Molecular Biology and Genetics
Aarhus University, Denmark
+45 2899 2578
rh@mbg.au.dk

PhD student Ewa Terczynska-Dyla
Department of Molecular Biology and Genetics
Aarhus University, Denmark
+45 8715 6638
ewat@mbg.au.dk

Rune Hartmann | EurekAlert!
Further information:
http://www.au.dk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>