Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene silencing shows promise for treating 2 fatal neurological disorders

13.04.2017

NIH-funded preclinical studies suggest designer drug may treat ALS and spinocerebellar ataxia 2

In two studies of mice, researchers showed that a drug, engineered to combat the gene that causes spinocerebellar ataxia type 2 (SCA2), might also be used to treat amyotrophic lateral sclerosis (ALS). Both studies were published in the journal Nature with funding from National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.


In studies of mice, scientists discovered a drug, designed to silence a gene called ataxin 2, may be effective at treating ALS and SCA2.

Courtesy of the NIH/NINDS.

"Our results provide hope that we may one day be able to treat these devastating disorders," said Stefan M. Pulst, M.D., Dr. Med., University of Utah, professor and chair of neurology and a senior author of one the studies. In 1996, Dr. Pulst and other researchers discovered that mutations in the ataxin 2 gene cause spinocerebellar ataxia type 2, a fatal inherited disorder that primarily damages a part of the brain called the cerebellum, causing patients to have problems with balance, coordination, walking and eye movements.

For this study his team found that they could reduce problems associated with SCA2 by injecting mouse brains with a drug programmed to silence the ataxin 2 gene. In the accompanying study, researchers showed that injections of the same type of drug into the brains of mice prevented early death and neurological problems associated with ALS, a paralyzing and often fatal disorder.

"Surprisingly, the ataxin 2 gene may act as a master key to unlocking treatments for ALS and other neurological disorders," said Aaron Gitler, Ph.D., Stanford University, associate professor and senior author of the second study. In 2010, Dr. Gitler and colleagues discovered a link between ataxin 2 mutations and ALS.

The type of drug they used is called an antisense oligonucleotide. Like an incomplete row of teeth on a zipper, these drugs are short sequences of DNA designed to bind to a portion of a gene's instructions carried by a molecule called messenger RNA. This stops cells from manufacturing proteins, a process known as gene silencing.

"Our antisense oligonucleotides prevent cells from reading the blueprint for the ataxin 2 gene," said Daniel R. Scoles, M.D., University of Utah and the lead author of the SCA2 study.

An antisense oligonucleotide drug has been approved by the Food and Drug Administration for treating spinal muscular atrophy, a hereditary disorder that causes arm and leg muscle weakness and deterioration in children. Researchers are conducting early phase clinical trials on the safety and effectiveness of gene silencing drugs to treat several neurological disorders, including Huntington's disease and an inherited form of ALS.

"Antisense oligonucleotides provide researchers with a promising tool for studying the underlying causes of many disorders and developing gene-targeting treatments," said Amelie Gubitz, Ph.D., program director at NINDS.

Mutations in ataxin 2 that are associated with SCA2 cause the gene to have polyglutamine expansions, strings of repeated copies of the three letter genetic code, CAG, which stands for the amino acid glutamine. On average, symptoms appear earlier and are more severe for patients who have longer strings. People who have only 27-33 repeats will not develop SCA2 but have an increased risk for ALS.

Dr. Pulst's team worked with a pharmaceutical company to develop antisense oligonucleotides that silence the ataxin 2 gene rather than the CAG repeats. They then tested oligonucleotides on two lines of mice genetically engineered to have problems associated with SCA2 by programming neurons in the cerebellum to make mutant ataxin 2.

In both lines, the oligonucleotides appeared to be effective. Mice injected with the drug were able to walk on a rotating rod longer than mice that received a placebo. Electrical recordings showed the drug restored the firing patterns of neurons in the cerebellum to normal. In addition to reducing ataxin 2 gene levels, the researchers found that the drug also restored the levels of several genes that appear to be decreased by mutant ataxin 2.

Meanwhile, Dr. Gitler's team used different mice to test the idea of combating ALS by silencing ataxin 2. These mice were genetically modified to manufacture high levels of the human version of TDP-43, a protein that normally regulates genes. The researchers investigated these mice because neurons from ALS patients often contain toxic clusters of TDP-43. The mice rapidly develop problems with walking and die early. Previous studies on yeast and flies by Dr. Gitler's team and his collaborators have suggested that mutant ataxin 2 may control the toxicity of TDP-43.

Compared to placebo, injections of the antisense oligonucleotides into the nervous system of the newborn mice extended their median lifespan by 35 percent and improved their ability to walk, while lowering ataxin 2 gene levels in the brain and spinal cord.

The researchers saw similar results when they eliminated ataxin 2 by crossbreeding the TDP-43 mice with mice that are genetically programmed to have no ataxin 2 gene. The offspring lived longer and walked better than the TDP-43 mice. The brains of the offspring also had fewer toxic TDP-43 clusters than the TDP-43 mice.

"Many years of research on yeast and flies laid the ground work for these exciting results," said Daniel Miller, Ph.D., program director NINDS. "They demonstrate that rigorous studies on simple disease models can lead to powerful insights that help us understand and potentially treat seemingly untreatable disorders."

Drs. Pulst and Gitler agreed that more research needs to be done before the types of antisense oligonucleotides their teams used can be tested in patients. Both labs are currently taking the next steps by conducting further preclinical experiments.

###

Article:

Scoles et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature, April 12, 2017 DOI: 10.1038/nature22044

Becker et al. Therapeutic reduction of ataxin 2 extends lifespan and reduces pathology in TDP-43 mice. Nature, April 12, 2017 DOI: 10.1038/nature22038

This study was supported by grants from the NINDS (NS033123, NS073009, NS081182, NS090930, NS065317, NS093865, NS073660, NS069375), Target ALS Foundation, the Robert Packard Center for ALS Research at Johns Hopkins, the Glenn Foundation, and the DFG. Ionis Pharmaceuticals supplied the authors with all of the antisense oligonucleotides in the described work.

For more information:

http://www.ninds.nih.gov

https://www.ninds.nih.gov/Disorders/All-Disorders/Ataxias-and-Cerebellar-or-Spinocerebellar-Degeneration-Information-Page

https://www.ninds.nih.gov/Disorders/All-Disorders/Amyotrophic-Lateral-Sclerosis-ALS-Information-Page

About NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Media Contact

Christopher G. Thomas
nindspressteam@ninds.nih.gov
301-496-5751

 @NINDSnews

http://www.ninds.nih.gov 

Christopher G. Thomas | EurekAlert!

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>