Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation leads to poorly understood birth defects

11.05.2016

Scientists have identified genetic mutations that appear to be a key culprit behind a suite of birth defects called ciliopathies, which affect an estimated 1 in 1,000 births. In a paper published online this week in Nature Genetics, a team of researchers led by The University of Texas at Austin's John Wallingford reveals that these mutations prevent certain proteins from working together to smooth the way for cells to communicate with one another.

Birth defects from genetic disorders of the cilia -- tentacle-like structures in cells that coordinate cell-to-cell communication in healthy people -- are varied, ranging from oral-facial-digital syndrome, which can cause extra toes, misshapen teeth, an abnormal tongue and other defects, to short rib polydactyly syndrome, a lethal birth defect that causes every organ in the body to be defective.


Cilia

Credit: John Wallingford

"For cells to talk to each other, functioning cilia are needed," says Wallingford, a professor in the Department of Molecular Biosciences. "We identified a group of proteins that form part of the base that cilia need in order to function. If that base is defective, it can cause serious birth defects that are frequently lethal."

The new research pinpoints how three proteins work together to form a base that allows cilia to carry critical cell-to-cell communications. Wallingford and his colleagues discovered that, much the way that cellphone towers provide a base for the antennas that assist with communication, these proteins together construct a base that anchors the cilia.

Disturbances in the little-known group of proteins, which the researchers called CPLANE, led to disturbed cell communication and observable ciliopathy in mouse models. The team also asked human geneticists to screen for the genes among their patients with similar birth defects and found that mutations in the same genes resulted in ciliopathies in humans.

Wallingford points out that the research is important, given that ciliopathies are more widespread than most people realize. Polycystic kidney disease, for example, which causes the abnormal growth of cysts on kidneys, is a disorder arising from defective cilia and afflicts about 600,000 people in the U.S.

"If you lump ciliopathies, the prevalence is high, and they will become one of the more common congenital diseases," says Wallingford. "Birth defects are an underappreciated problem, and we have little understanding of their genetic underpinnings despite their prevalence, not to mention their environmental underpinnings."

###

This research was funded by the National Institutes of Health and the Howard Hughes Medical Institute. Co-authors of the paper are from the University of California, Los Angeles; FHU TRANSLAD, Burgundy University, France; Stanford University School of Medicine; Boston Children's Hospital, Harvard Medical School; University Hospital Center, Liège, Belgium; Hospital Center, Luxembourg; Universitair Ziekenhuis Brussel, Belgium; Pediatric Centre PGIMER, Chandigarh, India; Federico II University of Naples, Italy; Telethon Institute of Genetics and Medicine, Naples, Italy; Dental Institute, King's College London, U.K.; Stony Brook University, New York; Mendelian Center, University of Washington; and Children Hospital, Dijon, France.

Media Contact

Kristin Elise Phillips
kristin.phillips@austin.utexas.edu
512-232-0654

 @UTAustin

http://www.utexas.edu 

Kristin Elise Phillips | EurekAlert!

Further reports about: birth defects cilia ciliopathies mutations proteins

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>