Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene fuels age-related obesity and diabetes

14.07.2015

Practically everyone gets fatter as they get older, but some people can blame their genes for the extra padding. Researchers have shown that two different mutations in a gene called ankyrin-B cause cells to suck up glucose faster than normal, fattening them up and eventually triggering the type of diabetes linked to obesity.

The more severe of the two mutations, called R1788W, is carried by nearly one million Americans. The milder mutation, known as L1622I, is shared by seven percent of the African American population and is about as common as the trait for sickle cell anemia.


Fat cells with the R1788W ankyrin-B mutation (shown on the right) have enlarged lipid droplets. The green color highlights the sites of fat storage in mouse adipose cells. Nuclei are shown in blue.

Credit: Damaris Lorenzo

The findings, which were generated in mice, could help identify at-risk individuals who might be able to tip the scales back in their favor by eating better and exercising more. The results appear July 13 in the Journal of Clinical Investigation.

"This is one of the first examples of a susceptibility gene that would only be manifested through a modern lifestyle," said Vann Bennett, M.D., Ph.D., senior author of the study and George Barth Geller Professor of Biochemistry, Cell Biology, and Neurobiology at Duke University School of Medicine.

"The obesity epidemic really took off in the 1980's, when sugary sodas and French fries became popular. It's not like we suddenly changed genetically in 1980, but rather we have carried susceptibility genes that were exacerbated by this new diet. We think our findings are just the beginning, and that there are going to be many genes like this."

Bennett, who is also an investigator with the Howard Hughes Medical Institute, discovered ankyrin-B more than thirty years ago. He found that ankyrin-B acts as a kind of protein anchor, tethering important proteins to the inside of the cell's plasma membrane. Since his initial discovery, Bennett and other researchers have implicated defects in ankyrin-B in a wide variety of human afflictions, including irregular heartbeat, autism, muscular dystrophy, aging, and, more recently, diabetes.

Diabetes is quickly becoming one of the greatest threats to public health, as waistlines expand around the world and here in the United States. If the current trends continue, one in three Americans will have diabetes by 2050. Patients with type 1 diabetes do not make enough insulin, the hormone that helps process the glucose that builds up in the bloodstream after a meal. Patients with type 2 diabetes, the form linked to obesity, make insulin but become resistant to its effects.

Several years ago, the Bennett laboratory found evidence that ankyrin-B mutations might play a role in insulin secretion and metabolism. Since then, several studies have uncovered rare ankyrin-B variants that are associated with type 2 diabetes. One mutation, called R1788W, was more common in Caucasians and Hispanics. Another, called L1622I, was found exclusively in African-Americans, a group known to be at a particularly high risk of diabetes. But it was still unclear how these changes in the genetic code could set a course for diabetes.

To get at that answer, Bennett's MD/PhD student Jane Healy created mouse models that carried these same human genetic variants. She and her colleagues found that animals with two copies of the R1788W mutation made less insulin than normal mice. Despite this shortcoming, their blood glucose levels were normal. So the researchers performed the rodent equivalent of a glucose tolerance test -- commonly used to screen for type 2 diabetes in people -- to determine how quickly glucose was cleared from the bloodstream in the mutant mice. To their surprise, the mutant mice metabolized glucose more quickly than normal mice.

"We thought that the main problem in these mice would be with the beta cells that produced and secreted insulin," said Healy, co-author of the study and a former trainee in Bennett's laboratory. "Instead, our most significant finding lay with the target cells, which took up much more glucose than expected."

Glucose doesn't enter cells and tissues all on its own, but instead has to rely on a second molecule, called GLUT4 transporter, to gain access. Normally, GLUT4 hangs out in the cell, like a hostess waiting for party guests to arrive. When insulin is present it acts as a kind of doorbell, alerting GLUT4 to spring into action and open the door to let glucose into the cell. When insulin goes away, the GLUT4 transporters close the door, turn around, and go back into the middle of the cell.

However, postdoctoral fellow Damaris Lorenzo, Ph.D., found that wasn't the case with the mutant mice. After conducting a number of biochemistry experiments, Lorenzo discovered that the mice had lots of GLUT4 on the surface of their muscle and fat cells even when there wasn't any insulin around. That meant that glucose could flow in without necessarily having to bother with the doorbell.

This open door policy was an advantage when they were young, because it protected the animals from low insulin levels. But when the mice got older -- or switched to a particularly high-fat diet -- it made the mice fatter and, eventually, led them to become insulin resistant.

The researchers believe that long ago, the R1788W mutation -- and the milder L1622I mutation -- may have provided an evolutionary advantage. Aging hunter-gatherer types, who weren't as effective at chasing down their next meal, needed to gain as much fat as possible to avoid starvation. Now that high-fat, high-calorie foods are plentiful in much of the world, these variants put people at increased risk for modern afflictions like obesity and diabetes.

"If people with these mutations are detected early enough, they become prime candidates for intervention with personalized therapies." said Lorenzo, lead author of the study. "That might involve specific strategies to manage their deficits in insulin secretion, as well as adhering to a normal diet and an active lifestyle, with the hope that they can avoid the metabolic diseases that could severely impair their quality of life."

Next, the researchers would like to explore whether the effects they observed in mice hold true in humans. They plan to genotype people in the general population, identify families with ankyrin mutations, and then perform family histories as well as glucose metabolism tests to assess the consequences of these genetic variants at a cellular level.

###

The research was supported by the Howard Hughes Medical Institute and the George Barth Geller Professorship fund.

CITATION: "Ankyrin-B Metabolic Syndrome: Age-Dependent Adiposity Combined with Pancreatic Beta-Cell Insufficiency," Damaris Nadia Lorenzo, Jane A. Healy, Janell Hostettler, Jonathan Davis, Jiayu Yang, Hans Ewald Hohmeier, Chao Wang, Mingjie Zhang, and Vann Bennett. JCI, July 13, 2015.

Media Contact

Karl Bates
karl.bates@duke.edu
919-681-8054

 @DukeU

http://www.duke.edu 

Karl Bates | EurekAlert!

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>