Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gator blood contains naturally strong germ fighters, new GMU research finds

12.02.2015

Alligator peptides could help soldiers in the field fight infections

Sophisticated germ fighters found in alligator blood may help future soldiers in the field fend off infection, according to new research by George Mason University.


George Mason University professor Barney Bishop poses with Fluffy, an American alligator.

Credit: Photo courtesy of St. Augustine Alligator Farm Zoological Park

The study, published Feb. 11 in the scientific journal PLOS One, is the result of a fundamental research project supported by the Defense Threat Reduction Agency (DTRA) to find bacterial infection-defeating compounds in the blood of the crocodilian family of reptiles, which includes American alligators.

The project is about to start its fourth year and has received $6 million in funding to date from DTRA. If fully funded over five years, the project will be worth $7.57 million.

Alligators live in bacteria-filled environments and dine on carrion. Yet this ancient reptile rarely falls ill.

"If you look at nature, sometimes we can find pre-selected molecules to study," says study co-author Monique van Hoek. "I was surprised to find peptides that were as effective as they are in fighting bacteria. I was really impressed."

Discoveries made by George Mason's 17-member, multidisciplinary research team could eventually find their way to the battlefield to protect warfighters from wound infections and potential exposure to biothreat agents. Researchers believe this work could benefit civilians too.

"We hope that these could be the basis to develop new treatments," says van Hoek, a professor in the School of Systems Biology and the National Center for Biodefense and Infectious Diseases at Mason.

Exploiting innate immunity

Van Hoek and lead co-authors Barney Bishop and Joel Schnur from the College of Science suspected the germ-fighting ability could be in the form of antimicrobial peptides. These very small proteins are part of the innate immunity of alligators and even humans; all higher organisms make antimicrobial peptides.

"It's that part of your immune system that keeps you alive in the two or three weeks before you can make antibodies to a bacterial infection," van Hoek says. "It's part of your generalized immune response to the world."

Peptides are more general in their activity than antibodies, which are made to fight infections by specific bacteria or viruses.

"Innate immunity may work less well than antibodies, but it works well enough," van Hoek adds. "The reason why we're so interested in them: they are part of nature's way of dealing with the onslaught of bacteria and viruses that we face every day. Every breath that you take, every thing that you eat, you're constantly exposed to bacteria and your body needs to fend them off in some way."

Alligator blood samples were provided by Kent Vliet of the University of Florida and the St. Augustine Alligator Farm Zoological Park in St. Augustine, Fla., which has a wide variety of reptiles, including all 23 species of crocodilians.

Bishop says he was surprised at the sophistication and diversity of the alligator's germ-fighting peptides. These reptiles have evolved with a formidable defense against bacterial infections.

The Mason team took an innovative approach in its study of the alligator blood samples. Bishop developed custom-made nanoparticles to preferentially capture the peptides out of the very complex mixture of proteins and peptides in alligator plasma.

This process revealed an unexpected result--the identified potent germ-fighting peptides were only fragments of larger "parent" proteins, says Bishop, who's also a professor in the Department of Chemistry and Biochemistry.

The custom-made particles used in this project significantly shortened the number of steps required to capture and identify peptides that were present in alligator blood plasma.

The Mason team has other reptiles to tackle. As part of the DTRA grant called "Translational Peptide for Personal Protection," Mason researchers also will study Siamese crocodiles, Nile crocodiles and gharials.

And they've learned a thing or two along the way about these ancient reptiles.

"You stay away from the business end," Bishop jokes.

The paper, Bioprospecting the American Alligator Host Defense Peptidome, is on the PLOS One website. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117394

About George Mason University

George Mason is Virginia's largest public research university. Located near Washington, D.C., Mason enrolls nearly 34,000 students from 130 countries and all 50 states. Mason has grown rapidly over the last half-century and is recognized for its innovation and entrepreneurship, remarkable diversity and commitment to accessibility. http://www.gmu.edu

Media Contact

Michele McDonald
mmcdon15@gmu.edu
703-993-8781

 @GeorgeMasonNews

http://www.gmu.edu 

Michele McDonald | EurekAlert!

Further reports about: Alligator GMU antimicrobial bacteria blood samples germ infections peptides proteins reptiles

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>