Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Heart Attacks to Cancer: What Role Do Long, Non-Coding RNAs Play?

12.05.2015

About 70 percent of our genes provide the blueprint for biomolecules whose function is only now being discovered – non-coding RNAs. Instead of being translated into proteins, they seem to perform steering functions in the body.

Stefanie Dimmeler was one of the first researchers to prove that the sub-group of micro-RNAs plays a role in regenerating blood vessels. She has now received the coveted ERC Advanced Investigator Grant from the European Research Council (ERC), which will allow her to study another large group of non-coding RNAs. She believes that this group plays a role in creating heart attacks, strokes and cancer. ERC has awarded her 2.5 million Euros over the next five years.


Blood vessels: An image of blood vessels in the heart (shown in red). The large vessel is surrounded by smaller vessels (capillaries). The nuclei are shown in blue, and the neurons are green.

Dimmeler

“If you asked me what was special about the evolutionary development of human beings, I would say it´s the more than 30,000 non-coding RNA, most of which we only share with primates,” says Stefanie Dimmeler. From the perspective of her research area, cardiovascular regeneration, it is especially noteworthy that vascular illnesses like arteriosclerosis, which causes heart attacks, only occur in their typical form in humans.

There are many indicators that long, non-coding RNAs, lncRNAs for short, control these illnesses. They affect the inside layer of the blood vessels, known as endothelial cells, and help supply the organs and tissues with oxygen and nutrients.

The technologies used to track these lncRNAs and their complex functions are much more complicated than finding proteins. Dimmeler and her working group identified two candidates, Angiolnc1 and Angiolnc2, that regulate the functions of endothelial cells. Now she wants to study the molecular epigenetic mechanisms that these two lncRNAs use to trigger vascular illnesses. The goal of this research is to identify new treatments for preventing arteriosclerosis, in order to reduce the incidence of heart attacks and strokes.

In the third part of her project, Dimmeler will study whether ring-shaped lncRNAs, which have special protection once they are released into the blood, can be used as biomarkers for identifying illnesses in the vascular system or the heart. To this end, she will work with her group to develop tests that can be used to find these biomolecules in patients’ blood during the various stages of cardiovascular illnesses.

Prof. Stefanie Dimmeler, born in 1967, studied Biology at the University of Constance, where she received her doctorate in 1993. After two years as a research assistant at the University of Cologne, she went to Goethe University, where she was promoted to professor in 1998 in the Department of Experimental Medicine. In 2001, she accepted a position as a professor in the Molecular Cardiology Department at Goethe University. She has been the Director of the Institute of Cardiovascular Regeneration, in the Center for Molecular Medicine, since 2008.

She is the co-speaker of the DFG-funded “Cardiopulmonary Systems” Excellence Cluster, the “LOEWE Center for Cell and Genetic Therapy” funded by the State of Hesse, and the German Center for Cardiovascular Research (DZHK) funded by the German Ministry for Education and Research (BMBF) at the Rhine-Main site. She is a member of the Macromolecular Complexes Excellence Cluster as well as several specialized research areas. From 2008 to 2012, she was a member of the German Ethics Commission. Stefanie Dimmeler has received numerous research prizes, including the renowned Gottfried Wilhelm Leibniz Prize from the German Research Foundation and the Ernst Jung Prize for Medicine.

Information: Prof. Stefanie Dimmeler, Institute for Cardiovascular Regeneration, Niederrad Campus, Main Office: Claudia Herfurth, Tel.: +49(0)69) 6301-6667, herfurth@med.uni-frankfurt.de.

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main
Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

Further reports about: CANCER ERC RNAs Strokes blood vessels endothelial cells heart attacks non-coding non-coding RNAs vascular

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>