Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IZI coordinates EU project of neurodegenerative diseases such as Alzheimer's & Parkinson

22.06.2015

7 June 2015 marked the start of a joint European project in Halle intended to shed light on common molecular features in the early development of neurodegenerative diseases. Five partner institutions from Halle, Leipzig, Erlangen, Paris (France) and Oslo (Norway) have set themselves the goal of working on therapeutic strategies based on new findings. The project, which is set to run over a three-year period, has been awarded a total of 1.7 million euros in funding from the European Union.

Besides the devastating effects they have on patients, neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases have one key thing in common: their pathology is based on the aggregation and accumulation of misfolded proteins in the brain.

This results in a loss of tissue and function and, consequently, severe neurological disorders which are fatal in the advanced stages of the diseases. Until now, the mechanisms associated with the early development of these diseases have mainly been researched independently of each other.

Latest investigations, however, have suggested similarities in the molecular development processes of the diseases. This is centered around the hypothesis that misfolded peptides, which frequently arise in the case of such diseases, also induce a deposit of other proteins.

This means that a peptide triggers degenerative processes which become more intense through the coaggregation of peptides. The main target proteins to be investigated include Abeta, alpha-synuclein and huntingtin.

Fraunhofer IZI's Molecular Drug Biochemistry and Therapy Development (MWT) project group is coordinating the EU project and aims to research these common features and develop new therapeutic strategies.

Led by Professor Hans-Ulrich Demuth and Dr Stephan Schilling, the group will contribute their many years of experience researching misfolded proteins to the project. Consequently, the Halle scientists have set themselves the chief task of synthesizing respective proteins and antibodies for their subsequent investigation. At Leipzig University, detailed investigations into the development of Alzheimer's will then be carried out building on this research.

At the Friedrich-Alexander University Erlangen-Nürnberg, the focus is placed on research into Huntington's disease, while the French National Institute of Health and Medical Research in Paris will look at the development of Parkinson's disease with an eye to the aspects mentioned above. At the University of Oslo, a computer-based database will be created, which will draw on the histological data generated by the units in order to gain a corresponding, local correlation between protein deposits in the brain for each different disease model.

Information on funding
This project is being funded by the "EU Joint Programme – Neurodegenerative Disease Research (JPND)", the largest global research initiative aimed at tackling the challenge of neurodegenerative diseases. JPND aims to increase the coordinated investments of its partner countries and thus to support research which looks to identify causes of disease, therapy development and suitable care measures for patients. Further information can be found at: www.jpnd.eu

Weitere Informationen:

http://www.izi.fraunhofer.de/fraunhofer-izi.html?&L=1

Presse Institute | Fraunhofer-Gesellschaft

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>