Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IZI coordinates EU project of neurodegenerative diseases such as Alzheimer's & Parkinson

22.06.2015

7 June 2015 marked the start of a joint European project in Halle intended to shed light on common molecular features in the early development of neurodegenerative diseases. Five partner institutions from Halle, Leipzig, Erlangen, Paris (France) and Oslo (Norway) have set themselves the goal of working on therapeutic strategies based on new findings. The project, which is set to run over a three-year period, has been awarded a total of 1.7 million euros in funding from the European Union.

Besides the devastating effects they have on patients, neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases have one key thing in common: their pathology is based on the aggregation and accumulation of misfolded proteins in the brain.

This results in a loss of tissue and function and, consequently, severe neurological disorders which are fatal in the advanced stages of the diseases. Until now, the mechanisms associated with the early development of these diseases have mainly been researched independently of each other.

Latest investigations, however, have suggested similarities in the molecular development processes of the diseases. This is centered around the hypothesis that misfolded peptides, which frequently arise in the case of such diseases, also induce a deposit of other proteins.

This means that a peptide triggers degenerative processes which become more intense through the coaggregation of peptides. The main target proteins to be investigated include Abeta, alpha-synuclein and huntingtin.

Fraunhofer IZI's Molecular Drug Biochemistry and Therapy Development (MWT) project group is coordinating the EU project and aims to research these common features and develop new therapeutic strategies.

Led by Professor Hans-Ulrich Demuth and Dr Stephan Schilling, the group will contribute their many years of experience researching misfolded proteins to the project. Consequently, the Halle scientists have set themselves the chief task of synthesizing respective proteins and antibodies for their subsequent investigation. At Leipzig University, detailed investigations into the development of Alzheimer's will then be carried out building on this research.

At the Friedrich-Alexander University Erlangen-Nürnberg, the focus is placed on research into Huntington's disease, while the French National Institute of Health and Medical Research in Paris will look at the development of Parkinson's disease with an eye to the aspects mentioned above. At the University of Oslo, a computer-based database will be created, which will draw on the histological data generated by the units in order to gain a corresponding, local correlation between protein deposits in the brain for each different disease model.

Information on funding
This project is being funded by the "EU Joint Programme – Neurodegenerative Disease Research (JPND)", the largest global research initiative aimed at tackling the challenge of neurodegenerative diseases. JPND aims to increase the coordinated investments of its partner countries and thus to support research which looks to identify causes of disease, therapy development and suitable care measures for patients. Further information can be found at: www.jpnd.eu

Weitere Informationen:

http://www.izi.fraunhofer.de/fraunhofer-izi.html?&L=1

Presse Institute | Fraunhofer-Gesellschaft

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>