Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fracture' prints, not fingerprints, help solve child abuse cases

08.05.2015

Much like a finger leaves its own unique print to help identify a person, researchers are now discovering that skull fractures leave certain signatures that can help investigators better determine what caused the injury.

Implications from the Michigan State University research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.


Michigan State University researchers Roger Haut and Todd Fenton have discovered that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Pictured are areas of the skull being stressed on impact. As the stresses become more severe and approach levels that might cause fracture, they become yellow to orange, and finally red for very intense levels of stress. Importantly, an area of high-intensity cranial stress develops early and away from the site of actual impact. Implications from the research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.

Credit: Michigan State University

Until now, multiple skull fractures meant several points of impact to the head and often were thought to suggest child abuse.

Roger Haut, a University Distinguished Professor in biomechanics, and Todd Fenton, a forensic anthropologist, have now proven this theory false. They've found that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Additionally, they've discovered that not all fractures start at the point of impact - some actually may begin in a remote location and travel back toward the impact site.

The team's findings were recently presented at the annual meeting of the American Academy of Forensic Sciences.

"It's a bit like smashing raw hamburger into a patty on the grill," Haut said. "When you press down on the meat to flatten it, all the edges crack. That's what can happen when a head injury occurs."

Because piglet skulls have similar mechanical properties as infant human skulls - meaning they bend and break in similar ways - Haut and Fenton used the already deceased specimens in their research and found they were able to classify the different fracture patterns with a high degree of accuracy.

"Our impact scenarios on the piglet skulls gave us about an 82 percent accuracy rate, while on the older skulls, it improved to about 95 percent," Fenton said.

To help them get to this level of accuracy, both researchers teamed up with Anil Jain, a University Distinguished Professor in computer science and engineering at MSU, to develop a mathematical algorithm to help classify the fractures.

"A major issue in child death cases is you never really know what happened," Haut said. "The prosecutor may have one idea, the medical examiner another, and the defendant a completely different scenario."

Fenton and Haut's close relationship with medical examiners often results in them being called upon in certain, hard-to-determine cases. They've used this new knowledge to help solve these cases, but both are also looking to use Jain's algorithm in an online resource that will provide even more assistance to investigators.

The team is currently developing a database, or Fracture Printing Interface, that will allow forensic anthropologists and investigators to upload human fracture patterns from different abuse cases and help them determine what most likely caused an injury.

"We will never know with 100 percent probability what happened in many of these cases, but this interface will give us a higher chance of figuring that out," Haut said.

###

Their research has been funded through multiple grants from the National Institute of Justice.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Sarina Gleason | EurekAlert!

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>