Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Fracture' prints, not fingerprints, help solve child abuse cases


Much like a finger leaves its own unique print to help identify a person, researchers are now discovering that skull fractures leave certain signatures that can help investigators better determine what caused the injury.

Implications from the Michigan State University research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.

Michigan State University researchers Roger Haut and Todd Fenton have discovered that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Pictured are areas of the skull being stressed on impact. As the stresses become more severe and approach levels that might cause fracture, they become yellow to orange, and finally red for very intense levels of stress. Importantly, an area of high-intensity cranial stress develops early and away from the site of actual impact. Implications from the research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.

Credit: Michigan State University

Until now, multiple skull fractures meant several points of impact to the head and often were thought to suggest child abuse.

Roger Haut, a University Distinguished Professor in biomechanics, and Todd Fenton, a forensic anthropologist, have now proven this theory false. They've found that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Additionally, they've discovered that not all fractures start at the point of impact - some actually may begin in a remote location and travel back toward the impact site.

The team's findings were recently presented at the annual meeting of the American Academy of Forensic Sciences.

"It's a bit like smashing raw hamburger into a patty on the grill," Haut said. "When you press down on the meat to flatten it, all the edges crack. That's what can happen when a head injury occurs."

Because piglet skulls have similar mechanical properties as infant human skulls - meaning they bend and break in similar ways - Haut and Fenton used the already deceased specimens in their research and found they were able to classify the different fracture patterns with a high degree of accuracy.

"Our impact scenarios on the piglet skulls gave us about an 82 percent accuracy rate, while on the older skulls, it improved to about 95 percent," Fenton said.

To help them get to this level of accuracy, both researchers teamed up with Anil Jain, a University Distinguished Professor in computer science and engineering at MSU, to develop a mathematical algorithm to help classify the fractures.

"A major issue in child death cases is you never really know what happened," Haut said. "The prosecutor may have one idea, the medical examiner another, and the defendant a completely different scenario."

Fenton and Haut's close relationship with medical examiners often results in them being called upon in certain, hard-to-determine cases. They've used this new knowledge to help solve these cases, but both are also looking to use Jain's algorithm in an online resource that will provide even more assistance to investigators.

The team is currently developing a database, or Fracture Printing Interface, that will allow forensic anthropologists and investigators to upload human fracture patterns from different abuse cases and help them determine what most likely caused an injury.

"We will never know with 100 percent probability what happened in many of these cases, but this interface will give us a higher chance of figuring that out," Haut said.


Their research has been funded through multiple grants from the National Institute of Justice.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Sarina Gleason | EurekAlert!

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>