Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fracture' prints, not fingerprints, help solve child abuse cases

08.05.2015

Much like a finger leaves its own unique print to help identify a person, researchers are now discovering that skull fractures leave certain signatures that can help investigators better determine what caused the injury.

Implications from the Michigan State University research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.


Michigan State University researchers Roger Haut and Todd Fenton have discovered that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Pictured are areas of the skull being stressed on impact. As the stresses become more severe and approach levels that might cause fracture, they become yellow to orange, and finally red for very intense levels of stress. Importantly, an area of high-intensity cranial stress develops early and away from the site of actual impact. Implications from the research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.

Credit: Michigan State University

Until now, multiple skull fractures meant several points of impact to the head and often were thought to suggest child abuse.

Roger Haut, a University Distinguished Professor in biomechanics, and Todd Fenton, a forensic anthropologist, have now proven this theory false. They've found that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Additionally, they've discovered that not all fractures start at the point of impact - some actually may begin in a remote location and travel back toward the impact site.

The team's findings were recently presented at the annual meeting of the American Academy of Forensic Sciences.

"It's a bit like smashing raw hamburger into a patty on the grill," Haut said. "When you press down on the meat to flatten it, all the edges crack. That's what can happen when a head injury occurs."

Because piglet skulls have similar mechanical properties as infant human skulls - meaning they bend and break in similar ways - Haut and Fenton used the already deceased specimens in their research and found they were able to classify the different fracture patterns with a high degree of accuracy.

"Our impact scenarios on the piglet skulls gave us about an 82 percent accuracy rate, while on the older skulls, it improved to about 95 percent," Fenton said.

To help them get to this level of accuracy, both researchers teamed up with Anil Jain, a University Distinguished Professor in computer science and engineering at MSU, to develop a mathematical algorithm to help classify the fractures.

"A major issue in child death cases is you never really know what happened," Haut said. "The prosecutor may have one idea, the medical examiner another, and the defendant a completely different scenario."

Fenton and Haut's close relationship with medical examiners often results in them being called upon in certain, hard-to-determine cases. They've used this new knowledge to help solve these cases, but both are also looking to use Jain's algorithm in an online resource that will provide even more assistance to investigators.

The team is currently developing a database, or Fracture Printing Interface, that will allow forensic anthropologists and investigators to upload human fracture patterns from different abuse cases and help them determine what most likely caused an injury.

"We will never know with 100 percent probability what happened in many of these cases, but this interface will give us a higher chance of figuring that out," Haut said.

###

Their research has been funded through multiple grants from the National Institute of Justice.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Sarina Gleason | EurekAlert!

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>