Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting HIV with antibodies

09.04.2015

30 years after HIV was discovered to be the cause of the acquired immune deficiency syndrome (AIDS), and despite intensive research, no vaccine or cure has yet been found. 

An international team of scientists, in collaboration with the German Center for Infection Research (DZIF) and the University Hospital of Cologne, has now tested a new generation of antibodies in humans for the first time. They have demonstrated that these broadly neutralising antibodies significantly reduce the number of human immunodeficiency viruses (HIV) in infected patients’ blood. The results have been published in the renowned journal Nature.


Fighting HIV with Antibodies

Zach Veilleux, Rockefeller University

Today, HIV infections can be well controlled with a combination of different antiviral drugs. However, the drugs can cause some severe side effects, are expensive and have to be taken over a lifetime. Additionally, resistance can develop, which challenges individual treatment. “This is why we still need new treatment options,” explains Cologne infectious diseases specialist Prof Gerd Fätkenheuer, who is researching new ways of treating and preventing AIDS at the German Center for Infection Research.

In the trial, published today in Nature, doctors from the University Hospital of Cologne together with researchers of Michel Nussenzweig’s Laboratory from Rockefeller University in New York (USA) investigated a new treatment approach. For the first time, the scientists conducted human trials with an antibody (3BNC117), which was developed previously in Nussenzweig laboratory.

The special thing about this antibody is its ability to neutralise a large number of different human immunodeficiency viruses effectively. In the trial, which was co-funded by the DZIF, the antibody showed good tolerability and favourable pharmacological properties.

Furthermore, patients undergoing treatment at the highest dose level (30 mg per kg of bodyweight) showed a significant drop in viral load. “With this, the antibody has a potency comparable to the drugs we are currently using for treatment,” Fätkenheuer explains. The treatment effects could be observed for up to 28 days after administration of the antibodies.

The trial consequently opens up a new field in HIV treatment. Co-First Author Prof Florian Klein, who will soon be changing from the Rockefeller University to the University Hospital of Cologne, sees particular potential in the mechanism of action of broadly neutralising antibodies: “Neutralising antibodies have a different mechanism of action and different pharmacological properties compared to the HIV drugs that have been used up to now.”

According to the scientists, “Neutralising antibodies could play an important role in HIV treatment and HIV prevention.” Plans for clinical trials investigating the efficacy of broadly neutralising antibodies with regard to curing HIV are currently underway.

Current publication
Caskey, M.*; Klein, F.*(*Co-First Authors); Lorenzi, J.C.C.; Seaman, M.S.; West, A.P., Jr, Buckley, N.; Kremer, G.; Nogueira, L.; Braunschweig, M.; Scheid, J.F.; Horwitz, J. A.; Shimeliovich, I.; Avraham-Shulman, S.B.; Witmer-Pack, M.; Platten, M., Lehmann, C.; Burke, L.A.; Hawthorne, T.; Gorelick, R.J.; Walker, B.D.; Keler, T.; Gulick, R.M., Fätkenheuer, G.; Schlesinger, S.J.; Nussenzweig, M.C.:
Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117
Nature, online first released on April 08 (2015)
DOI: 10.1038/nature14411

Contact
Prof Gerd Fätkenheuer
E-mail: g.faetkenheuer@uni-koeln.de

Prof Florian Klein
T +12123278367 /Mobile +17182900235
E-mail: fklein@rockefeller.edu

DZIF Press Office
Karola Neubert and Janna Schmidt
T +49531-6181-1170/1154
E-mail: presse@dzif.de

Press Office University Hospital of Cologne
Christoph Wanko
T +49221-478-88757
E-mail: Christoph.wanko@uk-koeln.de

Karola Neubert | idw - Informationsdienst Wissenschaft
Further information:
http://www.uk-koeln.de/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>