Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016

By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels

Insulin deficiency and hyperglycemia are two well-known culprits behind diabetes, both of which are reflected in blood glucose concentrations. Now, researchers are working to create ultrasensitive lab-on-a-chip devices to quickly measure glucose concentrations with the goal of developing device for early diagnosis and prevent of diabetes


Fiber optic biosensor-integrated microfluidic chip detects glucose levels from droplets of sweat.

Credit: Dr. A. P. Zhang and team, The Hong Kong Polytechnic University

A team of researchers from The Hong Kong Polytechnic University and Zhejiang University in China report integrating fiber optic glucose sensors into a microfluidic chip to create portable, high-performance, low-cost devices for measuring glucose levels. In a paper published this week in the journal Biomedical Optics Express, from The Optical Society (OSA).

'Today, photonic approaches are recognized as the most promising techniques for ultrasensitive sensing," said Dr. A. Ping Zhang, associate professor, Department of Electrical Engineering, The Hong Kong Polytechnic University. "In particular, the synergistic integration of photonic sensing and microfluidics led to the state-of-the-art technology known as optofluidics for biological and chemical analysis."

One reason microfluidic chip technology is so appealing is that it provides a tiny platform to integrate sensors with functional components, such as microfluidic mixers, in order to achieve a lab-on-a-chip analysis system for fast and reliable results.

While electrochemical glucose biosensors can be integrated into microfluidic channels to develop easy-to-handle, low-cost, and portable microfluidic chips, electroactive interference problems often appear in electrochemical sensors. But fiber optic sensors offer a solution to this issue, thanks to their immunity to electromagnetic interference.

By combining a new fiber optic biosensor with a microfluidic chip, Zhang and colleagues created an interference-free optofluidic device for ultrasensitive detection of glucose levels.

Their method involves fabricating an optical fiber long-period grating (LPG) with a period of 390 microns within a small-diameter optical fiber with a cladding diameter of 80 microns, he explained. Such fiber optic devices induce strong co-directional mode coupling through a resonant scattering process. And the resulting central wavelength is very sensitive to changes of the refractive index (RI) of the surrounding media via the evanescent field of optical fiber cladding mode.

"To transform the fiber optic RI sensor into a glucose sensor, the team selected glucose oxidase as a sensing material that would react with glucose in solution. To support the sensing film and magnify RI change, a pH-responsive multilayer film of polyethylenimine (PEI) and polyacrylic acid (PAA) is deposited on the side surface of the LPG sensor before immobilization of the sensing film," Zhang noted.

The PEI/PAA multilayer film surveils the oxidation of glucose with the gluclose oxidase catalyst and responds to the reaction via swelling or contracting," he added.

"Experimental results revealed that the new fiber optic sensor is very sensitive on its own and can detect glucose oxidase concentrations as low as 1 nM (10-9 molarity)," he said. "But, after integration into the microfluidic chip, the sensor's performance was remarkably further improved in terms of detection range and response time."

"Also, notably, no significant loss of biomolecular activity was observed during the experiments, which implies that our layer-by-layer self-assembly technique renders a robust electrostatic absorption of glucose oxidase within the sensing film,"Zhang said.

"The team's work is a significant step toward developing optofluidic devices for the early diagnosis and prevention of diabetes," he said.

In terms of applications, the optofluidic device enables detection of glucose in solution "requiring only a tiny droplet of sweat. This makes it an extremely appealing technology to develop for early diagnosis of diabetes via monitoring glucose content within sweat," Zhang said.

Their ultimate goal is to develop multifunctional "lab-on-a-chip devices" through the integration of photonics, microfluidics, and functional materials onto a small chip. Such a technology will enable a broad range of research and development in biomedical diagnostics, environmental monitoring and even aid drug discovery," he noted.

###

Paper: Ming-jie Yin, Bobo Huang, Shaorui Gao, A. Ping Zhang, and Xuesong Ye, "Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection," Biomed. Opt. Express 7, 2067-2077 (2016). DOI: 10.1364/BOE.7.002067.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger of The Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>