Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016

By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels

Insulin deficiency and hyperglycemia are two well-known culprits behind diabetes, both of which are reflected in blood glucose concentrations. Now, researchers are working to create ultrasensitive lab-on-a-chip devices to quickly measure glucose concentrations with the goal of developing device for early diagnosis and prevent of diabetes


Fiber optic biosensor-integrated microfluidic chip detects glucose levels from droplets of sweat.

Credit: Dr. A. P. Zhang and team, The Hong Kong Polytechnic University

A team of researchers from The Hong Kong Polytechnic University and Zhejiang University in China report integrating fiber optic glucose sensors into a microfluidic chip to create portable, high-performance, low-cost devices for measuring glucose levels. In a paper published this week in the journal Biomedical Optics Express, from The Optical Society (OSA).

'Today, photonic approaches are recognized as the most promising techniques for ultrasensitive sensing," said Dr. A. Ping Zhang, associate professor, Department of Electrical Engineering, The Hong Kong Polytechnic University. "In particular, the synergistic integration of photonic sensing and microfluidics led to the state-of-the-art technology known as optofluidics for biological and chemical analysis."

One reason microfluidic chip technology is so appealing is that it provides a tiny platform to integrate sensors with functional components, such as microfluidic mixers, in order to achieve a lab-on-a-chip analysis system for fast and reliable results.

While electrochemical glucose biosensors can be integrated into microfluidic channels to develop easy-to-handle, low-cost, and portable microfluidic chips, electroactive interference problems often appear in electrochemical sensors. But fiber optic sensors offer a solution to this issue, thanks to their immunity to electromagnetic interference.

By combining a new fiber optic biosensor with a microfluidic chip, Zhang and colleagues created an interference-free optofluidic device for ultrasensitive detection of glucose levels.

Their method involves fabricating an optical fiber long-period grating (LPG) with a period of 390 microns within a small-diameter optical fiber with a cladding diameter of 80 microns, he explained. Such fiber optic devices induce strong co-directional mode coupling through a resonant scattering process. And the resulting central wavelength is very sensitive to changes of the refractive index (RI) of the surrounding media via the evanescent field of optical fiber cladding mode.

"To transform the fiber optic RI sensor into a glucose sensor, the team selected glucose oxidase as a sensing material that would react with glucose in solution. To support the sensing film and magnify RI change, a pH-responsive multilayer film of polyethylenimine (PEI) and polyacrylic acid (PAA) is deposited on the side surface of the LPG sensor before immobilization of the sensing film," Zhang noted.

The PEI/PAA multilayer film surveils the oxidation of glucose with the gluclose oxidase catalyst and responds to the reaction via swelling or contracting," he added.

"Experimental results revealed that the new fiber optic sensor is very sensitive on its own and can detect glucose oxidase concentrations as low as 1 nM (10-9 molarity)," he said. "But, after integration into the microfluidic chip, the sensor's performance was remarkably further improved in terms of detection range and response time."

"Also, notably, no significant loss of biomolecular activity was observed during the experiments, which implies that our layer-by-layer self-assembly technique renders a robust electrostatic absorption of glucose oxidase within the sensing film,"Zhang said.

"The team's work is a significant step toward developing optofluidic devices for the early diagnosis and prevention of diabetes," he said.

In terms of applications, the optofluidic device enables detection of glucose in solution "requiring only a tiny droplet of sweat. This makes it an extremely appealing technology to develop for early diagnosis of diabetes via monitoring glucose content within sweat," Zhang said.

Their ultimate goal is to develop multifunctional "lab-on-a-chip devices" through the integration of photonics, microfluidics, and functional materials onto a small chip. Such a technology will enable a broad range of research and development in biomedical diagnostics, environmental monitoring and even aid drug discovery," he noted.

###

Paper: Ming-jie Yin, Bobo Huang, Shaorui Gao, A. Ping Zhang, and Xuesong Ye, "Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection," Biomed. Opt. Express 7, 2067-2077 (2016). DOI: 10.1364/BOE.7.002067.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger of The Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>