Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016

By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels

Insulin deficiency and hyperglycemia are two well-known culprits behind diabetes, both of which are reflected in blood glucose concentrations. Now, researchers are working to create ultrasensitive lab-on-a-chip devices to quickly measure glucose concentrations with the goal of developing device for early diagnosis and prevent of diabetes


Fiber optic biosensor-integrated microfluidic chip detects glucose levels from droplets of sweat.

Credit: Dr. A. P. Zhang and team, The Hong Kong Polytechnic University

A team of researchers from The Hong Kong Polytechnic University and Zhejiang University in China report integrating fiber optic glucose sensors into a microfluidic chip to create portable, high-performance, low-cost devices for measuring glucose levels. In a paper published this week in the journal Biomedical Optics Express, from The Optical Society (OSA).

'Today, photonic approaches are recognized as the most promising techniques for ultrasensitive sensing," said Dr. A. Ping Zhang, associate professor, Department of Electrical Engineering, The Hong Kong Polytechnic University. "In particular, the synergistic integration of photonic sensing and microfluidics led to the state-of-the-art technology known as optofluidics for biological and chemical analysis."

One reason microfluidic chip technology is so appealing is that it provides a tiny platform to integrate sensors with functional components, such as microfluidic mixers, in order to achieve a lab-on-a-chip analysis system for fast and reliable results.

While electrochemical glucose biosensors can be integrated into microfluidic channels to develop easy-to-handle, low-cost, and portable microfluidic chips, electroactive interference problems often appear in electrochemical sensors. But fiber optic sensors offer a solution to this issue, thanks to their immunity to electromagnetic interference.

By combining a new fiber optic biosensor with a microfluidic chip, Zhang and colleagues created an interference-free optofluidic device for ultrasensitive detection of glucose levels.

Their method involves fabricating an optical fiber long-period grating (LPG) with a period of 390 microns within a small-diameter optical fiber with a cladding diameter of 80 microns, he explained. Such fiber optic devices induce strong co-directional mode coupling through a resonant scattering process. And the resulting central wavelength is very sensitive to changes of the refractive index (RI) of the surrounding media via the evanescent field of optical fiber cladding mode.

"To transform the fiber optic RI sensor into a glucose sensor, the team selected glucose oxidase as a sensing material that would react with glucose in solution. To support the sensing film and magnify RI change, a pH-responsive multilayer film of polyethylenimine (PEI) and polyacrylic acid (PAA) is deposited on the side surface of the LPG sensor before immobilization of the sensing film," Zhang noted.

The PEI/PAA multilayer film surveils the oxidation of glucose with the gluclose oxidase catalyst and responds to the reaction via swelling or contracting," he added.

"Experimental results revealed that the new fiber optic sensor is very sensitive on its own and can detect glucose oxidase concentrations as low as 1 nM (10-9 molarity)," he said. "But, after integration into the microfluidic chip, the sensor's performance was remarkably further improved in terms of detection range and response time."

"Also, notably, no significant loss of biomolecular activity was observed during the experiments, which implies that our layer-by-layer self-assembly technique renders a robust electrostatic absorption of glucose oxidase within the sensing film,"Zhang said.

"The team's work is a significant step toward developing optofluidic devices for the early diagnosis and prevention of diabetes," he said.

In terms of applications, the optofluidic device enables detection of glucose in solution "requiring only a tiny droplet of sweat. This makes it an extremely appealing technology to develop for early diagnosis of diabetes via monitoring glucose content within sweat," Zhang said.

Their ultimate goal is to develop multifunctional "lab-on-a-chip devices" through the integration of photonics, microfluidics, and functional materials onto a small chip. Such a technology will enable a broad range of research and development in biomedical diagnostics, environmental monitoring and even aid drug discovery," he noted.

###

Paper: Ming-jie Yin, Bobo Huang, Shaorui Gao, A. Ping Zhang, and Xuesong Ye, "Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection," Biomed. Opt. Express 7, 2067-2077 (2016). DOI: 10.1364/BOE.7.002067.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger of The Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>