Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy drug could aid stroke victims

12.02.2015

Retigabine preserves brain tissue in mouse models of stroke

Retigabine, a drug approved to treat epilepsy, protected the brain against the effects of ischemic stroke in a study conducted at The University of Texas Health Science Center at San Antonio. Findings are in The Journal of Neuroscience.


New research from The University of Texas Health Science Center at San Antonio suggests that an already-approved drug could reduce the debilitating impact of strokes. MIce that had treatment with a drug called retigabine after a stroke were able to traverse a balance beam without difficulty. Untreated mice displayed a pronounced loss of coordination.

Credit

Drs. Mark S. Shapiro, Sonya Bierbower and James D. Lechleiter/The University of Texas Health Science Center at San Antonio

Sonya Bierbower, Ph.D., and Mark S. Shapiro, Ph.D., of the School of Medicine at the UT Health Science Center, compared treated and untreated mice after a stroke. In a balance beam exercise, untreated mice exhibited a pronounced loss of coordination with slips and falls. Retigabine-treated mice had no difficulty with balance, ambulation or turning around on the beam. See the video.

"You couldn't even tell they had a stroke," Dr. Shapiro, professor of physiology and senior author, said. "They ran across the balance beam like gymnasts."

Effects in tissue

Brain tissue of the treated mice showed significantly reduced damage, compared to untreated mice. Protective effects of the medication were observed up to five days after the stroke, said Dr. Bierbower, lead author and postdoctoral fellow in the Shapiro laboratory.

In an ischemic stroke, blood flow to the brain is suddenly cut off because a vessel gets blocked. The lone treatment approved by the U.S. Food and Drug Administration (FDA) is a clot-busting drug called tPA (tissue plasminogen activator). Since tPA severely thins blood, it can't be administered to many stroke patients.

Different system

The initial injury, the stroke, is followed by a cascade of nerve cell death in the brain. Retigabine works on a different system than tPA, acting directly on the nerve cells to minimize damage.

Retigabine and similar agents open specific proteins called potassium ion channels, whose action stops the electrical activity of nerve cells in the brain. "We thought if we could stop the neurons from firing, thus stopping their electrical activity, we could conserve their resources until their blood supply was restored," Dr. Shapiro said. "This proved to be the case."

Off-label use

Because retigabine is FDA approved under the American brand name Ezogabine as an anticonvulsant, physicians may use it off label in stroke patients. FDA approval for specifically this drug as stroke therapy will require a clinical trial to be conducted, and a team of neurologists and neurosurgeons at the Health Science Center is considering it, Dr. Shapiro said.

"As a leading cause of death and disability, stroke poses a major risk to our society," said David F. Jimenez, M.D., FACS, professor and chairman of the Department of Neurosurgery at the Health Science Center. "It is very exciting to see that our collaborative work with our colleagues in physiology could provide a superb way to ameliorate the harmful effects of stroke on our patients."

Drs. Bierbower and Shapiro both received funding from the National Institute of Neurological Disorders and Stroke to conduct this study. A grant from the American Heart Association has been applied for to further this work. James D. Lechleiter, Ph.D., professor of cellular and structural biology in the School of Medicine, is a co-author of the study.

For current news from the UT Health Science Center San Antonio, please visit our news release website, like us on Facebook or follow us on Twitter.

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 13 percent of academic institutions receiving National Institutes of Health (NIH) funding. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced more than 31,000 graduates. The $787.7 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit http://www.uthscsa.edu.

Media Contact

Will Sansom
sansom@uthscsa.edu
210-567-2579

 @uthscsa

http://www.uthscsa.edu/hscnews

Will Sansom | EurekAlert!

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>