Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enzyme in cosmetic products can act as allergen via the skin


Papain is an important industrial protein-degrading enzyme that is used, for example, in the food and cosmetic industries. When humans or animals come in contact with papain, strong allergic reactions of the skin can be the result, as scientists from the Messerli Research Institute of the University of Veterinary Medicine Vienna, the Medical University of Vienna, and the University of Vienna have found out. Their study was published in the Journal of Investigative Dermatology.

Papain is found naturally in papaya and is often referred to as a “plant-based pepsin” in reference to the digestive enzyme pepsin that is present in the stomach. Erika Jensen-Jarolim, Head of the Department of Comparative Medicine at the Messerli Research Institute, and her team researched the effect of papain directly on the skin of mice as well as on skin cells in the petri dish.

Professor Erika Jensen-Jarolim

Michael Bernkopf/Vetmeduni Vienna

The cosmetic industry uses papain in exfoliating treatments to remove dead surface skin. There even are enzyme-based shampoos for house pets to clean the fur and make it easier to brush.

How papain induces allergic reactions

Skin consists of several layers joined via cellular connections called “tight junctions”. First authors Caroline Stremnitzer and Krisztina Manzano-Szalai and the project team showed that papain induces a breakdown of these cell-cell junctions. On the skin, papain results in a loss of the barrier function. “After just a short period of time, papain increased vascular permeability and inflammatory cells infiltrated the skin,” Jensen-Jarolim explains.

Around two weeks after being exposed to papain, the researchers found antibodies to papain in the mice. These immunoglobulins are the cause of the allergic reaction toward the enzyme. “Exposed mice not only experienced a loss of the barrier function of the skin, but also had a specific allergic sensitization toward papain. The animals developed an allergy,” says allergy expert Jensen-Jarolim.

Caution is called for with papain-containing products

But the permeation of the skin barrier does not appear to be a prerequisite for sensitization toward papain. “The enzyme remains allergenic even when its enzymatic function has been blocked,” explains Jensen-Jarolim. The disruption to the skin barrier, she says, is essential for the infiltration of other allergens and bacteria.

In humans and in animals, diseases of the skin such as atopic dermatitis, commonly referred to as eczema, involve an increased permeability of the skin with a heightened risk for bacterial, fungal, or viral colonisation. Besides genetic factors, allergenic enzymes from external sources may also contribute to the symptoms.

It is striking that papain has an enormous structural similarity with one of the most important house dust mite allergens. The authors conclude that sensitization toward these house dust mite allergens follows the same principle. “People with sensitive skin as well as small children should avoid the enzyme (EC Number as much as possible and observe the ingredients declaration for consumer products as regulated by EU Directive 2000/13/EC,” says Jensen-Jarolim.

The article “Papain Degrades Tight Junction Proteins of Human Keratinocytes In Vitro and Sensitizes C57BL/6 Mice via the Skin Independent of its Enzymatic Activity or TLR4 Activation” by Caroline Stremnitzer, Krisztina Manzano-Szalai, Anna Willensdorfer, Philipp Starkl, Mario Pieper, Peter König, Michael Mildner, Erwin Tschachler, Ursula Reichart and Erika Jensen-Jarolim was published in the Journal of Investigative Dermatology.

About the Messerli Research Institute
The Messerli Research Institute was founded in 2010 with support from the Messerli Foundation (Switzerland) under management of the University of Veterinary Medicine, Vienna and in cooperation with the Medical University of Vienna and the University of Vienna. The research is devoted to the interaction between humans and animals, as well as its theoretical principles in animal cognition and behaviour, comparative medicine and ethology. The institute’s work is characterized by its broad interdisciplinary approach (biology, human medicine, veterinary medicine, philosophy, psychology, law) and strong international focus.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna (Vetmeduni Vienna) is one of the leading academic and research institutions in the field of veterinary medicine in Europe. The university’s focus is on the research areas of animal health, food safety, animal husbandry and animal protection as well as biomedical basics. Vetmeduni Vienna employs about 1,300 people and currently has an enrolment of 2,300 students. The campus in Vienna’s Floridsdorf district houses five university clinics as well as various research facilities. Two research institutes on Vienna’s Wilhelminenberg and a teaching and research property in Lower Austria also form part of Vetmeduni Vienna. Vetmeduni Vienna celebrated 250 years of existence in 2015.

Medical University of Vienna
The Medical University of Vienna is one of Europe’s most renowned educational and research institutions in medicine. With nearly 7,500 students, it is the largest medical educational institution in the German-speaking world. Its 27 university clinics and three clinical institutes, 12 theoretical centres and many highly-specialised laboratories also make it one of the most important elite research institutions in Europe in the biomedical field. The university has more than 48,000 m² available for clinical research.

Scientific contact:
Prof. Dr Erika-Jensen-Jarolim
Comparative Medicine
Messerli Resarch Institute –
University of Veterinary Medicine Vienna, Medical Wien of Vienna, and University of Vienna

Released by:
Heike Hochhauser
Public Relations and Communications
University of Veterinary Medicine, Vienna (Vetmeduni Vienna)
T +43 1 25077-1151

Weitere Informationen:

Heike Hochhauser | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>