Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elimination of specific neurons outside the brain triggers obesity

03.04.2017

New genetic technique developed

A research team led by Ana Domingos, from Instituto Gulbenkian de Ciencia (IGC; Portugal), developed a new genetic technique that allows the elimination of specific neurons of the peripheral nervous system without affecting the brain.


Nerve bundles dissected from adipose tissue of mice. Stained in orange are the neurons responsible for maintaining a normal adiposity.

Credit: Roksana Pirzgalska, IGC.

Using this novel technique in mice, the researchers were able to study the function of the neurons that innervate the adipose tissue, and saw that their elimination results in mice pounding up very quickly. Published on April 3rd in Nature Communications, this technique opens new avenues for the study of many diseases related to the peripheral nervous system and to other cells outside the brain.

Interested in studying the neurobiological mechanisms underlying obesity, Domingos' laboratory had recently discovered a set of neurons that innervate the adipose tissue, and demonstrated that the direct activation of those neurons burned fat.

The team now wanted to see if mice turned fat in the absence of these same peripheral neurons. Domingos' team was looking for ways to pinpoint their neurons of interest without affecting similar neurons that also exist in the brain.

To achieve this, Domingos laboratory collaborated with the chemist Gonçalo Bernardes at Instituto de Medicina Molecular (IMM, Portugal) and Cambridge University to develop a novel technique. The research team modified a widely used molecular tool, which is based on the use of diphtheria toxin. This toxin only kills cells that contain its receptor, which mice typically do not have, unless it is artificially introduced in specific cells that scientists want to study.

The team genetically introduced the diphtheria toxin receptor in the fat-innervating neurons of mice, which would then render neurons susceptible to the deadly action of the toxin. However, the genetic engineering also placed the diphtheria toxin receptor in other neurons in the brain that the researchers did not want to ablate. "The problem is that diphtheria toxin can cross the blood-brain barrier. Therefore, we could not use this molecular tool to eliminate peripheral neurons without affecting similar neurons that also exist in the brain", explains Ana Domingos.

To face this problem, the research team decided to chemically modify the diphtheria toxin, increasing its size and therefore limits its access to the brain. "Big molecules tend not to enter the brain, so we made the toxin bigger", further explains Ana Domingos.

Ines Mahu, PhD student in Domingos' laboratory and author of this study, describes their results: "We were able to eliminate neurons from the adipose tissue of mice, without affecting the brain. When comparing mice with or without those peripheral neurons, we observed a similar eating behavior. However, mice that lacked the sympathetic neurons became fat very quickly."

"We never saw animals getting fat so fast", adds Mafalda Pereira, the lead author of this study who was a master student at IGC, and is currently a PhD student at the Max Planck Institute for Metabolism Research in Cologne, Germany.

"This new technique allowed us to verify the importance of the neurons that innervate the adipose tissue to maintain a normal adiposity. But most importantly, it overcomes possible side effects in the brain that could result from the limitations of the previous technique. We can now perform genetic ablation outside the brain, and study the function of many peripheral cells not only for obesity but for several other diseases", highlights Ana Domingos.

###

This work was conducted at Instituto Gulbenkian de Ciência, in collaboration with researchers from Instituto de Medicina Molecular (Portugal), University of Santiago de Compostela (Spain), the Rockefeller University (USA), Yale University (USA), and University of Cambridge (UK). This work was funded by the Fundação para a Ciência e a Tecnologia (FCT, Portugal), the European Molecular Biology Organization (EMBO), and the European Community's Seventh Framework Programme.

Ana Mena | EurekAlert!

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>