Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early testing can predict the stroke patients who will develop upper limb spasticity

24.09.2015

Many stroke patients suffer from spasticity of the arm that cause pain and impaired sensorimotor function. But there are ways of identifying such patients ahead of time so that they can obtain the earliest possible treatment. Researchers at Sahlgrenska Academy have completed a study of stroke patients in the Gothenburg area.

Spasticity and related complications are relatively common after stroke, leading to poorer joint range of motion, greater pain and less sensitivity in the arm one year later.

A study at Sahlgrenska Academy, University of Gothenburg, has found that the Fugl-Meyer assessment scale, a sensorimotor test performed during the first month after stroke, predicts with a fairly high degree of accuracy the patients who will develop spasticity within one year.

Poor sensorimotor function
A total of 117 Gothenburg area patients with an average age of 67 participated in the study. All of them had experienced poorer sensorimotor function in the arm three days after first-ever stroke. Upper limb sensorimotor function, spasticity and joint range of motion were monitored over the following year.

Arve Opheim, a researcher at Sahlgrenska Academy, says, “Our findings suggest that systematic examinations of sensorimotor function can identify patients at risk of developing spasticity so that they can obtain early treatment. Opportunities for minimizing pain, impaired function and other repercussions of spasticity will inevitably follow.”

The article Early Prediction of Long-term Upper Limb Spasticity after Stroke: Part of the SALGOT Study was published in Neurology on August 14.

A FEW FACTS ABOUT SPASTICITY
Spasticity refers to a motor disorder caused by damage to the central nervous system. The spasms, which may arise following a stroke, have the potential to occasion pain as well. Anywhere from 40% to 50% of stroke patients develop upper limb spasticity.

For additional information, feel free to contact:
Arve Opheim, researcher, Sahlgrenska Academy, University of Gothenburg
Phone +47-9800 5122
arve.opheim@neuro.gu.se

Weitere Informationen:

http://sahlgrenska.gu.se/english/research/news-article//early-testing-can-predic...

Calle Björned | idw - Informationsdienst Wissenschaft

Further reports about: STROKE central nervous system damage degree of accuracy limb stroke patients

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>