Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dynamic duo to fight crime and cancer

27.10.2014

Miniature two-color barcodes have the potential to combat forgery and track cancerous cells

Tiny rod-like single crystals that act as miniature dual-color barcodes have been synthesized by A*STAR researchers and co-workers. The researchers have demonstrated the potential of these barcodes for two very different applications: anti-counterfeiting measures and cell tracking.


Green NaYF4 microrods with red tips, which are promising for security ink and cell tracking applications.

Reproduced, with permission, from Ref. 1 © 2014 American Chemical Society

So-called lanthanide-doped upconversion materials are highly promising for applications against crime and cancer as they have adjustable morphologies and tunable output wavelengths — they can also be fabricated by inexpensive processes that are easily scaled up.

To date, single-crystal nanocrystals made from these materials have been impractical as multicolor barcodes because their tiny size makes them too small to be observed using conventional optical microscopes.

Xiaogang Liu at the A*STAR Institute of Materials Research and Engineering and co-workers based in Singapore, China and Australia overcame this problem by synthesizing different-colored microscale rods that have red, green or blue tips. These rods are made of a lanthanide-doped upconversion material, NaYF4, and are sufficiently long that their colored tips can be readily resolved using a standard microscope1.

As a first step, the researchers controlled the lengths of the NaYF4 microrods by varying the doping concentration of gadolinium. They then adjusted the color of the microrods by varying the doping concentrations of ytterbium (Yb3+) and erbium (Er3+) ions.

The colored tips were simply a different phase of the same material as the microrods and were fabricated using a minor variation of the same procedure. Different combinations of microrod and tip colors were made by adjusting the doping concentrations of the microrods and tips.

Liu and team demonstrated the potential of these miniature barcodes for anti-forgery measures by producing two transparent security inks: one that contained dual-color microrods with green centers and red tips and a control ink that contained green microrods.

When illuminated by an infrared laser beam and viewed by conventional microscope, printed patterns produced using the two inks are essentially indistinguishable under low magnification and have practically identical spectral properties. However, when observed under high magnification, the red tips of the microrods in the non-control ink are clearly visible, allowing the two inks to be easily distinguished from each other.

The researchers also point out that since the microrods can be internalized by cancer cells, it should be possible to use them as optical probes for imaging tumors. Liu notes that unlike conventional ‘top-down’ techniques, which have low yields and are expensive, the use of NaYF4 microrods with tips separated by spacers has the potential to “provide a ‘bottom-up’ solution for gram-scale production of microsized barcodes.”

Reference
(1) Zhang, Y., Zhang, L., Deng, R., Tian, J., Zong, Y. et al. Multicolor barcoding in a single upconversion crystal. Journal of the American Chemical Society 136, 4893–4896 (2014). 

Associated links

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>