Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dynamic duo to fight crime and cancer


Miniature two-color barcodes have the potential to combat forgery and track cancerous cells

Tiny rod-like single crystals that act as miniature dual-color barcodes have been synthesized by A*STAR researchers and co-workers. The researchers have demonstrated the potential of these barcodes for two very different applications: anti-counterfeiting measures and cell tracking.

Green NaYF4 microrods with red tips, which are promising for security ink and cell tracking applications.

Reproduced, with permission, from Ref. 1 © 2014 American Chemical Society

So-called lanthanide-doped upconversion materials are highly promising for applications against crime and cancer as they have adjustable morphologies and tunable output wavelengths — they can also be fabricated by inexpensive processes that are easily scaled up.

To date, single-crystal nanocrystals made from these materials have been impractical as multicolor barcodes because their tiny size makes them too small to be observed using conventional optical microscopes.

Xiaogang Liu at the A*STAR Institute of Materials Research and Engineering and co-workers based in Singapore, China and Australia overcame this problem by synthesizing different-colored microscale rods that have red, green or blue tips. These rods are made of a lanthanide-doped upconversion material, NaYF4, and are sufficiently long that their colored tips can be readily resolved using a standard microscope1.

As a first step, the researchers controlled the lengths of the NaYF4 microrods by varying the doping concentration of gadolinium. They then adjusted the color of the microrods by varying the doping concentrations of ytterbium (Yb3+) and erbium (Er3+) ions.

The colored tips were simply a different phase of the same material as the microrods and were fabricated using a minor variation of the same procedure. Different combinations of microrod and tip colors were made by adjusting the doping concentrations of the microrods and tips.

Liu and team demonstrated the potential of these miniature barcodes for anti-forgery measures by producing two transparent security inks: one that contained dual-color microrods with green centers and red tips and a control ink that contained green microrods.

When illuminated by an infrared laser beam and viewed by conventional microscope, printed patterns produced using the two inks are essentially indistinguishable under low magnification and have practically identical spectral properties. However, when observed under high magnification, the red tips of the microrods in the non-control ink are clearly visible, allowing the two inks to be easily distinguished from each other.

The researchers also point out that since the microrods can be internalized by cancer cells, it should be possible to use them as optical probes for imaging tumors. Liu notes that unlike conventional ‘top-down’ techniques, which have low yields and are expensive, the use of NaYF4 microrods with tips separated by spacers has the potential to “provide a ‘bottom-up’ solution for gram-scale production of microsized barcodes.”

(1) Zhang, Y., Zhang, L., Deng, R., Tian, J., Zong, Y. et al. Multicolor barcoding in a single upconversion crystal. Journal of the American Chemical Society 136, 4893–4896 (2014). 

Associated links

A*STAR Research | Research SEA News
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>