Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double effort against Rett's syndrome

20.12.2016

The trick against haploinsufficiencies: Getting the 'single' gene to work for 2

Imagine that a colleague of yours has fallen ill and will be absent for a while from the office. What do you do? Do you go on working at your usual pace and by doing so risk a huge backlog of work that will affect the performance of the whole office, or do you roll up your sleeves and get down to it (perhaps also after your boss has motivated you by promising some benefit) by doubling your efforts and doing your absent colleague's work as well as your own?


The rat's brain areas stimulated in the study.

Credit: SISSA

Something similar occurs with genes when their homologues are missing, a condition doctors call haploinsufficiency. When this abnormality manifests, especially when it concerns genes that have an important function in the central nervous system, it may lead to very serious diseases, such as Rett's syndrome that causes severe progressive mental retardation related to the FOXG1 gene.

A group of researchers at the International School for Advanced Studies (SISSA) in Trieste, led by Antonello Mallamaci, has decided to adopt the "motivational" boss strategy by stimulating the surviving FOXG1 gene to work more to compensate for the absence of the missing gene.

... more about:
»RNA »SISSA »nervous »nervous system »neurons

"By using viral vectors to insert into neurons RNA fragments targeting the gene's regulatory sequences, we "gently" stimulated the gene to do more work, in particular nearly double", explains Mallamaci. "Note that we don't want the gene to do more than that. If it worked, say, three times as much, it could cause even worse damage". In fact, it is known that when three copies of the FOXG1 exist (one more than normal), we have West's syndrome, which is perhaps even worse as it causes a severe form of epilepsy. "It's therefore vital that the gene we stimulate does no more than about double the normal amount of work".

The method adopted by the Trieste group is a "cunning" solution to the treatment problems posed by these diseases. "Stimulating the normal gene allows us to preserve its natural endogenous regulation", explains Mallamaci. Genes in fact are not expressed everywhere and at the same intensity: to the contrary, in many body tissues they are silenced, in others their activity is time-modulated with great precision. If their regulation were to be disrupted, it is easy to imagine the chaos that this would generate. "Going back to the office worker's metaphor, it's like having an inexperienced intern do the absent worker's job: at best he won't do anything, at worst he'll mess things up. Instead, asking an experienced colleague, who's familiar with the office's processes and rhythms, to work harder, offers greater guarantees".

Multiple tests

The team ran several tests. First, in vitro, the scientists checked whether stimulation through promoter RNA was able to amplify gene activity only where it was needed. "FOXG1 is only active in the anterior brain and we absolutely don't want it to act elsewhere in the nervous system or the body", explains Mallamaci. "The tests gave positive results: after stimulation, the gene continued to be expressed only in cells where it had previously been active and remained silent in tissues where it normally doesn't work. Very importantly, the activity observed increased by a factor not far from 2, i.e. that "double" expression that we were trying to achieve".

The second test, also in vitro, demonstrated that the gene's endogenous regulatory mechanisms related to the electrical activity of the neurons expressing it are not altered by stimulation with RNA: "we saw a rise in the gene's activity, but the shape of the time-activity curve was basically unchanged, a clear indication that regulation remains the same", explains Cristina Fimiani, PhD student in Functional and Structural Genomics at SISSA and co-first author of the study.

The third step was to see whether the stimulation also worked in vivo. "The test was done on healthy mice and we found that the stimulation was even more effective in vivo than in vitro," Mallamaci concludes.

"We're still at the beginning of a very long clinical process that might one day lead to treatment", he adds. "The results, though, are very clear and definitely encourage us to continue this line of research. The next steps will be in vivo tests on animal models affected by the disease".

What makes these therapies so interesting for the future? "Rett's disease is rare and affects only a small number of patients, so it doesn't attract the attention and investments of major pharmaceutical companies", concludes the scientist. "But, taken together, haploinsufficiencies affect very many people. The methodology we present in this study is therefore a test for a general method capable of fighting the large number of haploinsufficencies affecting the nervous system, and once developed it could be easily adapted to different genes".

Media Contact

Federica Sgorbissa
pressoffice@sissa.it
39-040-374-7644

 @sissaschool

http://www.sissa.it 

Federica Sgorbissa | EurekAlert!

Further reports about: RNA SISSA nervous nervous system neurons

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>