Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double effort against Rett's syndrome

20.12.2016

The trick against haploinsufficiencies: Getting the 'single' gene to work for 2

Imagine that a colleague of yours has fallen ill and will be absent for a while from the office. What do you do? Do you go on working at your usual pace and by doing so risk a huge backlog of work that will affect the performance of the whole office, or do you roll up your sleeves and get down to it (perhaps also after your boss has motivated you by promising some benefit) by doubling your efforts and doing your absent colleague's work as well as your own?


The rat's brain areas stimulated in the study.

Credit: SISSA

Something similar occurs with genes when their homologues are missing, a condition doctors call haploinsufficiency. When this abnormality manifests, especially when it concerns genes that have an important function in the central nervous system, it may lead to very serious diseases, such as Rett's syndrome that causes severe progressive mental retardation related to the FOXG1 gene.

A group of researchers at the International School for Advanced Studies (SISSA) in Trieste, led by Antonello Mallamaci, has decided to adopt the "motivational" boss strategy by stimulating the surviving FOXG1 gene to work more to compensate for the absence of the missing gene.

... more about:
»RNA »SISSA »nervous »nervous system »neurons

"By using viral vectors to insert into neurons RNA fragments targeting the gene's regulatory sequences, we "gently" stimulated the gene to do more work, in particular nearly double", explains Mallamaci. "Note that we don't want the gene to do more than that. If it worked, say, three times as much, it could cause even worse damage". In fact, it is known that when three copies of the FOXG1 exist (one more than normal), we have West's syndrome, which is perhaps even worse as it causes a severe form of epilepsy. "It's therefore vital that the gene we stimulate does no more than about double the normal amount of work".

The method adopted by the Trieste group is a "cunning" solution to the treatment problems posed by these diseases. "Stimulating the normal gene allows us to preserve its natural endogenous regulation", explains Mallamaci. Genes in fact are not expressed everywhere and at the same intensity: to the contrary, in many body tissues they are silenced, in others their activity is time-modulated with great precision. If their regulation were to be disrupted, it is easy to imagine the chaos that this would generate. "Going back to the office worker's metaphor, it's like having an inexperienced intern do the absent worker's job: at best he won't do anything, at worst he'll mess things up. Instead, asking an experienced colleague, who's familiar with the office's processes and rhythms, to work harder, offers greater guarantees".

Multiple tests

The team ran several tests. First, in vitro, the scientists checked whether stimulation through promoter RNA was able to amplify gene activity only where it was needed. "FOXG1 is only active in the anterior brain and we absolutely don't want it to act elsewhere in the nervous system or the body", explains Mallamaci. "The tests gave positive results: after stimulation, the gene continued to be expressed only in cells where it had previously been active and remained silent in tissues where it normally doesn't work. Very importantly, the activity observed increased by a factor not far from 2, i.e. that "double" expression that we were trying to achieve".

The second test, also in vitro, demonstrated that the gene's endogenous regulatory mechanisms related to the electrical activity of the neurons expressing it are not altered by stimulation with RNA: "we saw a rise in the gene's activity, but the shape of the time-activity curve was basically unchanged, a clear indication that regulation remains the same", explains Cristina Fimiani, PhD student in Functional and Structural Genomics at SISSA and co-first author of the study.

The third step was to see whether the stimulation also worked in vivo. "The test was done on healthy mice and we found that the stimulation was even more effective in vivo than in vitro," Mallamaci concludes.

"We're still at the beginning of a very long clinical process that might one day lead to treatment", he adds. "The results, though, are very clear and definitely encourage us to continue this line of research. The next steps will be in vivo tests on animal models affected by the disease".

What makes these therapies so interesting for the future? "Rett's disease is rare and affects only a small number of patients, so it doesn't attract the attention and investments of major pharmaceutical companies", concludes the scientist. "But, taken together, haploinsufficiencies affect very many people. The methodology we present in this study is therefore a test for a general method capable of fighting the large number of haploinsufficencies affecting the nervous system, and once developed it could be easily adapted to different genes".

Media Contact

Federica Sgorbissa
pressoffice@sissa.it
39-040-374-7644

 @sissaschool

http://www.sissa.it 

Federica Sgorbissa | EurekAlert!

Further reports about: RNA SISSA nervous nervous system neurons

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>