Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double effort against Rett's syndrome

20.12.2016

The trick against haploinsufficiencies: Getting the 'single' gene to work for 2

Imagine that a colleague of yours has fallen ill and will be absent for a while from the office. What do you do? Do you go on working at your usual pace and by doing so risk a huge backlog of work that will affect the performance of the whole office, or do you roll up your sleeves and get down to it (perhaps also after your boss has motivated you by promising some benefit) by doubling your efforts and doing your absent colleague's work as well as your own?


The rat's brain areas stimulated in the study.

Credit: SISSA

Something similar occurs with genes when their homologues are missing, a condition doctors call haploinsufficiency. When this abnormality manifests, especially when it concerns genes that have an important function in the central nervous system, it may lead to very serious diseases, such as Rett's syndrome that causes severe progressive mental retardation related to the FOXG1 gene.

A group of researchers at the International School for Advanced Studies (SISSA) in Trieste, led by Antonello Mallamaci, has decided to adopt the "motivational" boss strategy by stimulating the surviving FOXG1 gene to work more to compensate for the absence of the missing gene.

... more about:
»RNA »SISSA »nervous »nervous system »neurons

"By using viral vectors to insert into neurons RNA fragments targeting the gene's regulatory sequences, we "gently" stimulated the gene to do more work, in particular nearly double", explains Mallamaci. "Note that we don't want the gene to do more than that. If it worked, say, three times as much, it could cause even worse damage". In fact, it is known that when three copies of the FOXG1 exist (one more than normal), we have West's syndrome, which is perhaps even worse as it causes a severe form of epilepsy. "It's therefore vital that the gene we stimulate does no more than about double the normal amount of work".

The method adopted by the Trieste group is a "cunning" solution to the treatment problems posed by these diseases. "Stimulating the normal gene allows us to preserve its natural endogenous regulation", explains Mallamaci. Genes in fact are not expressed everywhere and at the same intensity: to the contrary, in many body tissues they are silenced, in others their activity is time-modulated with great precision. If their regulation were to be disrupted, it is easy to imagine the chaos that this would generate. "Going back to the office worker's metaphor, it's like having an inexperienced intern do the absent worker's job: at best he won't do anything, at worst he'll mess things up. Instead, asking an experienced colleague, who's familiar with the office's processes and rhythms, to work harder, offers greater guarantees".

Multiple tests

The team ran several tests. First, in vitro, the scientists checked whether stimulation through promoter RNA was able to amplify gene activity only where it was needed. "FOXG1 is only active in the anterior brain and we absolutely don't want it to act elsewhere in the nervous system or the body", explains Mallamaci. "The tests gave positive results: after stimulation, the gene continued to be expressed only in cells where it had previously been active and remained silent in tissues where it normally doesn't work. Very importantly, the activity observed increased by a factor not far from 2, i.e. that "double" expression that we were trying to achieve".

The second test, also in vitro, demonstrated that the gene's endogenous regulatory mechanisms related to the electrical activity of the neurons expressing it are not altered by stimulation with RNA: "we saw a rise in the gene's activity, but the shape of the time-activity curve was basically unchanged, a clear indication that regulation remains the same", explains Cristina Fimiani, PhD student in Functional and Structural Genomics at SISSA and co-first author of the study.

The third step was to see whether the stimulation also worked in vivo. "The test was done on healthy mice and we found that the stimulation was even more effective in vivo than in vitro," Mallamaci concludes.

"We're still at the beginning of a very long clinical process that might one day lead to treatment", he adds. "The results, though, are very clear and definitely encourage us to continue this line of research. The next steps will be in vivo tests on animal models affected by the disease".

What makes these therapies so interesting for the future? "Rett's disease is rare and affects only a small number of patients, so it doesn't attract the attention and investments of major pharmaceutical companies", concludes the scientist. "But, taken together, haploinsufficiencies affect very many people. The methodology we present in this study is therefore a test for a general method capable of fighting the large number of haploinsufficencies affecting the nervous system, and once developed it could be easily adapted to different genes".

Media Contact

Federica Sgorbissa
pressoffice@sissa.it
39-040-374-7644

 @sissaschool

http://www.sissa.it 

Federica Sgorbissa | EurekAlert!

Further reports about: RNA SISSA nervous nervous system neurons

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>