Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupted fat breakdown in the brain makes mice dumb

19.05.2017

A study led by the University of Bonn opens a new perspective with regard to the development of dementia. The scientists blocked the breakdown of a certain fat molecule in the mouse brain. As a result the animals exhibited learning and memory problems. Also the quantity of Alzheimer-specific proteins in their brains increased significantly. The researchers now have a clue as to why the mice become dumb. The results are published in the renowned scientific journal “Autophagy”.

Apart from water, our brain is rich in lipids – in plain language: fats. The lipids act, for instance, as an insulating layer around the nerve fibers and thus prevent short circuits. However, they are also a main component in the delicate membranes that surround the brain cells.


Healthy control nerve cells with intact “garbage bags” (red).

© AG van Echten-Deckert/Uni Bonn


Nerve cells with disrupted S1P breakdown: the yellow-orange marked garbage bags have not closed properly, and are therefore transparent.

© AG van Echten-Deckert/Uni Bonn

Sphingolipids, a special lipid type are highly enriched in the brain. One of their degradation products, S1P, may play a central role in the development of Alzheimer’s and other forms of dementia. “We raised mice that are no longer able to break down S1P in large parts of their brain,” explains Dr. Gerhild van Echten-Deckert. “The animals then displayed severely reduced learning and memory performance.”

Van Echten-Deckert undertakes research at the LIMES Institute at the University of Bonn (the acronym stands for “Life and Medical Sciences”) as an assistant professor. For a long time, she has been one of the few experts in the world interested in the role of S1P in the brain. The new study could fundamentally change this, as the researchers at the University of Bonn, Jena University Hospital, the German Center for Neurodegenerative Diseases (DZNE) and from San Francisco and Madrid were able to show what far-reaching consequences disrupted S1P breakdown has.

“Self-eating” keeps the brain healthy

Normally, S1P is broken down into simpler products. One such breakdown product generated is important for a vital metabolic pathway – called autophagy. The word autophagy (literally translates to “self-eating”) and the pathway enables cells to digest and recycle their own components. The cells are thus cleared from defective proteins and cell organelles that no longer function properly.

Intracellular waste disposal works in two steps: first, it packs the waste in tiny “garbage bags”. These then merge with other “bags” that contain highly reactive enzymes. The enzymes “shred” the content of the garbage bags and thus dispose it off.

The break-down product of S1P is involved in packing the waste into the intracellular garbage bags. “If S1P is not broken down, fewer closed garbage bags are formed; autophagy then no longer works accurately,” explains the first author of the study Daniel Mitroi, who has recently completed his PhD at the LIMES Institute. “Harmful substances thus accumulated in the brains of our mice. These included the protein APP, which plays a key role in the development of Alzheimer’s.”

As autophagy is crucial for normal functioning of the brain, improper intracellular waste disposal results in severe illnesses. Therefore last year the Nobel Prize in Medicine was awarded to the Japanese scientist Yoshinori Ohsumi for his notable work on this vital mechanism. The results of the current study shed light on a previously overlooked mechanism for dementia development. “In the long term, our work may contribute towards developing successful treatment strategies for brain disorders,” hopes Dr. van Echten-Deckert.

Publication: Daniel N. Mitroi, Indulekha Karunakaran, Markus Gräler, Julie D. Saba, Dan Ehninger, María Dolores Ledesma and Gerhild van Echten-Deckert: SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production; Autophagy; DOI: 10.1080/15548627.2017.1291471

Contact:

Dr. Gerhild van Echten-Deckert
LIMES Institute
University of Bonn
Tel. +49 (0)228/732703
E-mail: g.echten.deckert@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

Further reports about: Alzheimer’s S1P autophagy brain cells dementia enzymes garbage bags nerve fibers waste disposal

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>