Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a novel gene for hereditary colon cancer

29.07.2016

The formation of large numbers of polyps in the colon has a high probability of developing into colon cancer, if left untreated. The large-scale appearance of polyps is often due to a hereditary cause; in this case the disease can occur in multiple family members. Under the leadership of human geneticists of the University Hospital Bonn, a team of researchers discovered genetic changes in the MSH3 gene in patients and identified a new rare form of hereditary colon cancer. The results have now been published in "The American Journal of Human Genetics".

Colon polyps form like mushroom-shaped growths from the mucosa and are several millimeters to several centimeters in size. They are benign and generally do not cause any symptoms – however, they can turn into malignant tumors (colon cancer).


Dr. Ronja Adam, Prof. Dr. Stefan Aretz and Dr. Isabel Spier (from left) from the working group "Familiar colon cancer" at the Institute of Human Genetics at the University Hospital Bonn.

Photo: Andreas Stein/Human Genetics

Physicians refer to the development of a large number of polyps in the colon as "polyposis." Scientists have already discovered several genes associated with a polyposis. "However, about one-third of families affected by the disease do not have any abnormalities in these genes," says Prof. Dr. Stefan Aretz, head of the working group at the Institute of Human Genetics at the University of Bonn Hospital. Therefore, there would have to be even more genes involved in the formation of polyps in the colon.

Together with pathologists from the University Hospital Bonn, scientists from the Yale University School of Medicine in New Haven (USA), and the Frankfurt University Hospital, the team working with Prof. Aretz investigated the genetic material (DNA) of more than 100 polyposis patients using blood samples.

In each patient, all of the about 20,000 protein-coding genes known were simultaneously examined. In this process, the scientists filtered the rare, possibly relevant genetic changes out of the gigantic quantity of data, like the proverbial needle in a haystack. In two patients, genetic changes (mutations) were discovered in the MSH3 gene on chromosome 5.

Proof of causes is like a trial based on circumstantial evidence

"The challenge is proving the causal connection between the mutations in this gene and the disease," says Prof. Aretz. The process is similar to that of a trial based on circumstantial evidence. Family members also play a role here: The siblings with the disease have to have these same MSH3 mutations as the patient who was first examined, but not the healthy relatives. That was the case. In addition, the scientists investigated the consequences for patients resulting from the loss of function of the MSH3 gene. "It involves a gene for the repair of the genetic material," reports Dr. Ronja Adam, one of the two lead authors from Prof. Aretz's team.

"The mutations cause the MSH3 protein to not be formed." Since the protein is missing in the cell nucleus of the patient´s tissues, there is an accumulation of genetic defects. The mutations which are not repaired then predispose to the more frequent occurrence of polyps in the colon.

The newly discovered type of polyposis, in contrast to many other forms of hereditary colon cancer, is not inherited dominantly, but instead recessively. "This means that siblings have a 25 percent chance of developing the disease; however, the parents and children of affected persons only have a very low risk of developing the disease," explains Dr. Isabel Spier from the Institute of Human Genetics, who was also very involved in the study.

Opportunities for better diagnoses and new drugs

The annual colonoscopy is the most effective cancer screening method for polyposis patients. As a result, the development of colon cancer can be effectively prevented. By investigating the MSH3 gene, a clear diagnosis can be made prospectively in some other, previously unexplained polyposis cases. Afterwards, healthy persons at risk in the family can be tested for the mutations.

"Only proven carriers would need to take part in the intensive surveillance program," says the human geneticist. In addition, science would gain new insights into the development and biological foundations of tumors through the identification of mutations in the MSH3 gene. Prof. Aretz: "The knowledge about molecular mechanisms which lead to cancer is also a precondition for the development of new targeted drugs."

Publication: Exome sequencing identifies biallelic MSH3 germline mutations as recessive subtype of colorectal adenomatous polyposis, The American Journal of Human Genetics, DOI: 10.1016/j.ajhg.2016.06.015

Media contact information:

Prof. Dr. Stefan Aretz
Institute of Human Genetics
Biomedical Center
University Hospital Bonn
Tel. ++49-228-28751009
E-Mail: stefan.aretz@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>