Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cotton fibres instead of carbon nanotubes

07.05.2015

Plant-based cellulose nanofibres do not pose a short-term health risk, especially short fibres, shows a study conducted in the context of National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64). But lung cells are less efficient in eliminating longer fibres.

Similar to carbon nanotubes that are used in cycling helmets and tennis rackets, cellulose nanofibres are extremely light while being extremely tear-resistant.

But their production is significantly cheaper because they can be manufactured from plant waste of cotton or banana plants. "It is only a matter of time before they prevail on the market," says Christoph Weder of the Adolphe Merkle Institute at the University of Fribourg.

In the context of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), he collaborated with the team of Barbara Rothen-Rutishauser to examine whether these plant-based nanofibres are harmful to the lungs when inhaled.

The investigation does not rely on animal testing; instead the group of Rothen-Rutishauser developped a complex 3D lung cell system to simulate the surface of the lungs by using various human cell cultures in the test tube.

The shorter, the better

Their results (*) show that cellulose nanofibres are not harmful: the analysed lung cells showed no signs of acute stress or inflammation. But there were clear differences between short and long fibres: the lung cell system efficiently eliminated short fibres while longer fibres stayed on the cell surface.

"The testing only lasted two days because we cannot grow the cell cultures for longer," explains Barbara Rothen-Rutishauser. For this reason, she adds, they cannot say if the longer fibre may have a negative impact on the lungs in the long term. Tests involving carbon nanotubes have shown that lung cells lose their equilibrium when they are faced with long tubes because they try to incorporate them into the cell to no avail.

"This frustrated phagocytosis can trigger an inflammatory reaction," says Rothen-Rutishauser. To avoid potential harm, she recommends that companies developing products with nanofibres use fibres that are short and pliable instead of long and rigid.

National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64)

The National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) hopes to be able to bridge the gaps in our current knowledge on nanomaterials. Opportunities and risks for human health and the environment in relation to the manufacture, use and disposal of synthetic nanomaterials need to be better understood. The projects started their research work in December 2010.

(*) C. Endes, S. Mueller, C. Kinnear et al. (2015). Fate of Cellulose Nanocrystal Aerosols Deposited on the Lung Cell Surface In Vitro. Biomacromolecules online: doi: 10.1021/acs.biomac.5b00055

(Journalists can obtain a pdf file by writing to: com@snf.ch)

Contact

Prof. Barbara Rothen-Rutishauser
Adolphe Merkle Institute
University of Fribourg
Ch. des Verdiers 4
CH-1700 Fribourg
Tel.: +41 (0) 26 300 95 02
E-mail: barbara.rothen@unifr.ch

Weitere Informationen:

http://www.nfp64.ch/E/Pages/home.aspx
http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-150507-press-release-nr...

Martina Stofer | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>