Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer-aided diagnosis of rare genetic disorders from family snaps

24.06.2014

Computer analysis of photographs could help doctors diagnose which condition a child with a rare genetic disorder has, say Oxford University researchers.

The researchers, funded in part by the Medical Research Council (MRC), have come up with a computer programme that recognises facial features in photographs; looks for similarities with facial structures for various conditions, such as Down's syndrome, Angelman syndrome, or Progeria; and returns possible matches ranked by likelihood.


This image shows an average face taking on the average facial features of eight rare genetic disorders that have been built from a growing bank of photographs of people diagnosed with different syndromes. Oxford University scientists have developed a computer program to help doctors diagnose rare genetic disorders by recognizing facial structure in photographs.

Credit: Christoffer Nellåker/Oxford University

Using the latest in computer vision and machine learning, the algorithm increasingly learns what facial features to pay attention to and what to ignore from a growing bank of photographs of people diagnosed with different syndromes.

The researchers report their findings in the journal eLife. The study was funded by the MRC, the Wellcome Trust, the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) and the European Research Council (ERC VisRec).

While genetic disorders are each individually rare, collectively these conditions are thought to affect one person in 17. Of these, a third may have symptoms that greatly reduce quality of life. However, most people fail to receive a genetic diagnosis.

'A diagnosis of a rare genetic disorder can be a very important step. It can provide parents with some certainty and help with genetic counselling on risks for other children or how likely a condition is to be passed on,' says lead researcher Dr Christoffer Nellåker of the MRC Functional Genomics Unit at the University of Oxford. 'A diagnosis can also improve estimates of how the disease might progress, or show which symptoms are caused by the genetic disorder and which are caused by other clinical issues that can be treated.'

The team of researchers at the University of Oxford included first author Quentin Ferry, a DPhil research student, and Professor Andrew Zisserman of the Department of Engineering Science, who brought expertise in computer vision and machine learning.

Professor Zisserman says: 'It is great to see such an inventive and beneficial use of modern face representation methods.'

Identifying a suspected developmental disorder tends to require clinical geneticists to come to a conclusion based on facial features, follow up tests and their own expertise. It's thought that 30–40% of rare genetic disorders involve some form of change in the face and skull, possibly because so many genes are involved in development of the face and cranium as a baby grows in the womb.

The researchers set out to teach a computer to carry out some of the same assessments objectively.

They developed a programme that – like Google, Picasa and other photo software – recognises faces in ordinary, everyday photographs. The programme accounts for variations in lighting, image quality, background, pose, facial expression and identity. It builds a description of the face structure by identifying corners of eyes, nose, mouth and other features, and compares this against what it has learnt from other photographs fed into the system.

The algorithm the researchers have developed sees patients sharing the same condition automatically cluster together.

The computer algorithm does better at suggesting a diagnosis for a photo where it has previously seen lots of other photos of people with that syndrome, as it learns more with more data.

Patients also cluster where no documented diagnosis exists, potentially helping in identifying ultra-rare genetic disorders.

'A doctor should in future, anywhere in the world, be able to take a smartphone picture of a patient and run the computer analysis to quickly find out which genetic disorder the person might have,' says Dr Nellåker.

'This objective approach could help narrow the possible diagnoses, make comparisons easier and allow doctors to come to a conclusion with more certainty.'

###

Notes to Editors

The paper 'Diagnostically-relevant facial gestalt information from ordinary photos' by Quentin Ferry and colleagues is to be published in the journal eLife on Tuesday 24 January 2014.

The study was funded by the Medical Research Council, the Wellcome Trust, the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) and the European Research Council (ERC VisRec).

The Medical Research Council has been at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Twenty-nine MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. http://www.mrc.ac.uk

The National Institute for Health Research (NIHR) is funded by the Department of Health to improve the health and wealth of the nation through research. Since its establishment in April 2006, the NIHR has transformed research in the NHS. It has increased the volume of applied health research for the benefit of patients and the public, driven faster translation of basic science discoveries into tangible benefits for patients and the economy, and developed and supported the people who conduct and contribute to applied health research. The NIHR plays a key role in the Government's strategy for economic growth, attracting investment by the life-sciences industries through its world-class infrastructure for health research. Together, the NIHR people, programmes, centres of excellence and systems represent the most integrated health research system in the world. For further information, visit the NIHR website.

Oxford University's Medical Sciences Division is one of the largest biomedical research centres in Europe, with over 2,500 people involved in research and more than 2,800 students. The University is rated the best in the world for medicine, and it is home to the UK's top-ranked medical school.

From the genetic and molecular basis of disease to the latest advances in neuroscience, Oxford is at the forefront of medical research. It has one of the largest clinical trial portfolios in the UK and great expertise in taking discoveries from the lab into the clinic. Partnerships with the local NHS Trusts enable patients to benefit from close links between medical research and healthcare delivery.

A great strength of Oxford medicine is its long-standing network of clinical research units in Asia and Africa, enabling world-leading research on the most pressing global health challenges such as malaria, TB, HIV/AIDS and flu. Oxford is also renowned for its large-scale studies which examine the role of factors such as smoking, alcohol and diet on cancer, heart disease and other conditions.

Press Office | Eurek Alert!

More articles from Health and Medicine:

nachricht Portable finger-probe device can successfully measure liver function in potential organ donors
29.05.2015 | University of California - Los Angeles Health Sciences

nachricht Project start: New active substance targeting dreaded hospital pathogens
29.05.2015 | Deutsches Zentrum für Infektionsforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>