Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination therapy could provide new treatment option for ovarian cancer

02.05.2017

Researchers have been trying to understand why up to 85 percent of women experience recurrence of high-grade serous ovarian cancer -- the most common subtype of ovarian cancer -- after standard treatment with the chemotherapy drug carboplatin.

Preclinical research from Dr. Sanaz Memarzadeh, who is a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, has potentially solved this mystery and pinpointed a combination therapy that may be effective for up to 50 percent of women with ovarian cancer.


Ovarian cancer tumors with higher percentages of cIAP-expressing cells, shown in red at left, were more sensitive to a potential combination therapy than tumor cells without cIAP-expressing cells.

Credit: UCLA Broad Stem Cell Research Center

Memarzadeh's research, published in the journal Precision Oncology, shows a new combination therapy of carboplatin and an experimental drug called birinapant can improve survival in mice with ovarian cancer tumors. Additional findings reveal that testing for a specific protein could identify ovarian tumors for which the treatment could be effective. Importantly, the treatment could also target cancers that affect other parts of the body, including the bladder, cervix, colon and lung cancer.

In 2015, Memarzadeh and her team uncovered and isolated carboplatin-resistant ovarian cancer stem cells. These cells have high levels of proteins called cIAPs, which prevent cell death after chemotherapy.

Since the cancer stem cells survive carboplatin treatment, they regenerate the tumor; with each recurrence of ovarian cancer, treatment options become more limited. Memarzadeh showed that birinapant, which degrades cIAPs, can make carboplatin more effective against some ovarian cancer tumors.

"I've been treating women with ovarian cancer for about two decades and have seen firsthand that ovarian cancer treatment options are not always as effective as they should be," said Memarzadeh, director of the G.O. Discovery Lab and member of the UCLA Jonsson Comprehensive Cancer Center. "Our previous research was promising, but we still had questions about what percentage of tumors could be targeted with the birinapant and carboplatin combination therapy, and whether this combination could improve overall survival by eradicating chemotherapy-resistant ovarian cancer tumors."

In this new study, the research team first tested whether the combination therapy could improve survival in mice. Half of the mice tested had carboplatin-resistant human ovarian cancer tumors and the other half had carboplatin-sensitive tumors.

The team administered birinapant or carboplatin as well as the two drugs combined and then monitored the mice over time. While birinapant or carboplatin alone had minimal effect, the combination therapy doubled overall survival in half of the mice regardless of whether they had carboplatin-resistant or carboplatin-sensitive tumors.

"Our results suggest that the treatment is applicable in some, but not all, tumors," said Rachel Fujikawa, a fourth year undergraduate student in Memarzadeh's lab and co-first author of the study.

To assess the combination therapy's rate of effectiveness in tumors, the team went on to test 23 high-grade serous ovarian cancer tumors from independent patients. Some were from patients who had never been treated with carboplatin and some were from patients who had carboplatin-resistant cancer.

With these samples, the researchers generated ovarian cancer tumors utilizing a method called disease-in-a-dish modeling and tested the same treatments previously tested in mice. Once again, carboplatin or birinapant alone had some effect, while the combination of birinapant and carboplatin successfully eliminated the ovarian cancer tumors in approximately 50 percent of samples. Importantly, the combination therapy worked for both carboplatin-resistant and carboplatin-sensitive tumors.

The researchers also measured cIAPs (the target for the drug birinapant) in the tumors. They found a strong correlation between cancer stem cells with high levels of cIAP and a positive response to the combination therapy. Since elevated levels of cIAPs have been linked to chemotherapy resistance in other cancers, the researchers wondered if the combination therapy could effectively target those cancers as well.

The team created disease-in-a-dish models using human bladder, cervix, colon and lung cancer cells and tested the combination therapy. Similar to the ovarian cancer findings, 50 percent of the tumors were effectively targeted and high cIAP levels correlated with a positive response to the combination therapy.

"I believe that our research potentially points to a new treatment option. In the near future, I hope to initiate a phase 1/2 clinical trial for women with ovarian cancer tumors predicted to benefit from this combination therapy," said Memarzadeh, gynecologic oncology surgeon and professor at the David Geffen School of Medicine at UCLA.

###

The research was supported by an American Cancer Society Research Scholar Grant (RSG-14-217-407 01-TBG), the Phase One Foundation, the Ovarian Cancer Circle Inspired by Robin Babbini, a STOP Cancer Margot Lansing Memorial Seed award, the National Institutes of Health (R01CA183877 and #U54 MD007598) and the UCLA Broad Stem Cell Research Center.

Media Contact

Mirabai Vogt-James
mvogt@mednet.ucla.edu
310-983-1163

 @uclahealth

http://www.uclahealth.org/ 

Mirabai Vogt-James | EurekAlert!

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>