Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CNIO scientists have created mice with hyper-long telomeres without altering the genes


CNIO scientists have created mice with telomeres that are longer than those of the unmodified species, show fewer signs of molecular aging and a have a lower incidence of cancer

The Telomeres and Telomerase Group at the Spanish National Cancer Research Centre (CNIO), in collaboration with the Centre's Transgenic Mice Core Unit, has succeeded in creating mice in the laboratory with hyper-long telomeres and with reduced molecular ageing, avoiding the use of what to date has been the standard method: genetic manipulation. This new technique based on epigenetic changes that is described today in the pages of Nature Communications, avoids the manipulation of genes in order to delay molecular ageing. The study also underlines the importance of this new strategy in generating embryonic stem cells and iPS cells with long telomeres for use in regenerative medicine.

This is a representative image from the intestine of chimeric mice. Green cells are those with hyper-long telomeres. Telomeres appear in red.

Credit: Spanish National Cancer Research Centre (CNIO)

Telomeres (the protective structures located at the ends of chromosomes) are essential to the stability of our genetic material and to maintain the "youthful state" of our cells and of our bodies. However, telomeres get shorter as we age. Once they reach a critical length, cells enter a state of senescence or die. This is one of the molecular causes of cellular ageing and of the emergence of ageing-related diseases.

On the other hand, when telomeres are extra-long - as achieved for the first time by the CNIO group headed by Maria A. Blasco using the expression of the telomerase gene - they exert a protective role against ageing and ageing-related diseases, thus significantly extending the lives of the mice.


We must go back to the year 2009 when, in a paper published by the CNIO Telomeres and Telomerase Group in the journal Cell Stem Cell, they described that the in vitro culture of iPS cells caused the progressive lengthening of telomeres, to the point of generating what the authors called "hyper-long telomeres". Sometime later, in 2011, Elisa Varela (also first author of this above-mentioned paper) and her colleagues at the CNIO, published a paper in the journal Proceedings of the National Academy of Sciences (PNAS) stating that this phenomenon also occurs spontaneously in embryonic stem cells when cultured in vitro.

"The in vitro expansion of the embryonic stem cells results in the elongation of the telomeres up to twice their normal length" explained the authors. A lengthening that occurs thanks to the active natural mechanisms without alterations in the telomerase gene.

However, would these cells be capable of developing into a mouse with telomeres that are much longer than normal and that would age more slowly? In the paper published today in Nature Communications, Elisa Varela and her colleagues prove that this is the case.


The cells with hyper-long telomeres in these mice appear to be perfectly functional. When the tissues were analysed at various moments (0, 1, 6 and 12 months of life), these cells maintained the additional length scale (they shortened over time but at a normal rhythm), accumulated less DNA damage and had a greater capacity to repair any damage. In addition, the animals presented a lower tumour incidence than normal mice.

These results show that pluripotent stem cells that carry hyper-long telomeres can give rise to organisms with telomeres that remain young at the molecular level for longer. According to the authors, this "proof of concept means that it is possible to generate adult tissue with longer telomeres in the absence of genetic modifications".

"Our work also demonstrates that it is possible to generate iPS cells - explains Blasco - with longer telomeres that would turn into differentiated cells also with longer telomeres and that would, therefore, be better protected against damage". This would be of benefit to the field of regenerative medicine; teams are now studying how to use iPS cells to generate adult cell types for cell therapy.

The next step that the CNIO Telomeres and Telomerase Group is already working on will be to "generate a new species of mice in which the telomeres of all the cells are twice as long as those in normal mice", explain Blasco and Varela. "Then, we will be able to address some of the important questions that remain unanswered: would a mouse species with telomeres that are double in length live longer? Is this the mechanism that is used by nature to determine different longevities in genetically similar species? Would this new species present a higher or lower incidence of cancer?


The study has been funded by the Spanish Ministry of Economy and Competitiveness, the European Research Council (ERC), the Regional Government of Madrid, the AXA Research Fund, and the Botín Foundation and Banco Santander through Santander Universities.

Media Contact

Nuria Noriega


Nuria Noriega | EurekAlert!

Further reports about: CNIO Telomerase embryonic stem cells genes iPS cells regenerative medicine

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>