Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists devise revolutionary 3-D bone-scanning technique

09.09.2016

The technique provides 3-D images of an unparalleled resolution without using X-rays; it should have major implications for the diagnosis and treatment of bone injuries

Chemists from Trinity College Dublin, in collaboration with RCSI, have devised a revolutionary new scanning technique that produces extremely high-res 3D images of bones -- without exposing patients to X-ray radiation.


The technique provides 3-D images of an unparalleled resolution without using X-rays. It should have major implications for the diagnosis and treatment of bone injuries.

Credit: Trinity College Dublin

The chemists attach luminescent compounds to tiny gold structures to form biologically safe 'nanoagents' that are attracted to calcium-rich surfaces, which appear when bones crack - even at a micro level. These nanoagents target and highlight the cracks formed in bones, allowing researchers to produce a complete 3D image of the damaged regions.

The technique will have major implications for the health sector as it can be used to diagnose bone strength and provide a detailed blueprint of the extent and precise positioning of any weakness or injury. Additionally, this knowledge should help prevent the need for bone implants in many cases, and act as an early-warning system for people at a high risk of degenerative bone diseases, such as osteoporosis.

... more about:
»3D »MRI »X-rays »damage »implants »osteoporosis

The research, led by the Trinity College Dublin team of Professor of Chemistry, Thorri Gunnlaugsson, and Postdoctoral Researcher, Esther Surender, has just been published in the leading journal Chem, a sister journal to Cell, which is published by CellPress.

Professor Gunnlaugsson said: "This work is the outcome of many years of successful collaboration between chemists from Trinity and medical and engineering experts from RCSI. We have demonstrated that we can achieve a three-dimensional map of bone damage, showing the so-called microcracks, using non-invasive luminescence imaging. The nanoagent we have developed allows us to visualise the nature and the extent of the damage in a manner that wasn't previously possible. This is a major step forward in our endeavour to develop targeted contrast agents for bone diagnostics for use in clinical applications."

The work was funded by Science Foundation Ireland and by the Irish Research Council, and benefited from collaboration with scientists at RCSI (Royal College of Surgeons in Ireland), led by Professor of Anatomy, Clive Lee.

Professor Lee said: "Everyday activity loads our bones and causes microcracks to develop. These are normally repaired by a remodelling process, but, when microcracks develop faster, they can exceed the repair rate and so accumulate and weaken our bones. This occurs in athletes and leads to stress fractures. In elderly people with osteoporosis, microcracks accumulate because repair is compromised and lead to fragility fractures, most commonly in the hip, wrist and spine. Current X ray techniques can tell us about the quantity of bone present but they do not give much information about bone quality."

He continued: "By using our new nanoagent to label microcracks and detecting them with magnetic resonance imaging (MRI), we hope to measure both bone quantity and quality and identify those at greatest risk of fracture and institute appropriate therapy. Diagnosing weak bones before they break should therefore reduce the need for operations and implants - prevention is better than cure."

In addition to the unprecedented resolution of this imaging technique, another major step forward lies in it not exposing X-rays to patients. X-rays emit radiation and have, in some cases, been associated with an increased risk of cancer. The red emitting gold-based nanoagents used in this alternative technique are biologically safe - gold has been used safely by medics in a variety of ways in the body for some time.

Dr Esther Surender, Trinity, said: "These nanoagents have great potential for clinical application. Firstly, by using gold nanoparticles, we were able to lower the overall concentration of the agent that would have to be administered within the body, which is ideal from a clinical perspective. Secondly, by using what is called 'two-photon excitation' we were able to image bone structure using long wavelength excitation, which is not harmful or damaging to biological tissues."

She added: "These nanoagents are similar to the contrast agents that are currently being utilised for MRI within the clinic, and hence have the potential to provide a novel means of medical bone diagnosis in the future. Specifically, by replacing the Europium with its sister ion Gadolinium, we can tune into the MRI activity of these nanoagents for future use alongside X-ray and computed tomography (CT) scans."

Professor Gunnlaugsson and his research team are based in the Trinity Biomedical Sciences Institute (TBSI), which recently celebrated its 5-Year anniversary. Professor Gunnlaugsson presented his research at a symposium to mark the occasion, along with many other world-leaders in chemistry, immunology, bioengineering and cancer biology.

Media Contact

Thomas Deane
deaneth@tcd.ie
353-189-64685

 @tcddublin

http://www.tcd.ie/ 

Thomas Deane | EurekAlert!

Further reports about: 3D MRI X-rays damage implants osteoporosis

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>