Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes uncovered in the gut bacteria of patients with multiple sclerosis

13.07.2016

Study finds alterations in the gut microbiomes of treated and untreated MS patients

A connection between the bacteria living in the gut and immunological disorders such as multiple sclerosis have long been suspected, but for the first time, researchers have detected clear evidence of changes that tie the two together. Investigators from Brigham and Women's Hospital (BWH) have found that people with multiple sclerosis have different patterns of gut microorganisms than those of their healthy counterparts. In addition, patients receiving treatment for MS have different patterns than untreated patients. The new research supports recent studies linking immunological disorders to the gut microbiome and may have implications for pursuing new therapies for MS.


Intestinal microbiome composition from healthy controls (HC), untreated MS patients (MS-U), and MS patients on disease modifying therapy (MS-Tr) measured on two different high-throughput DNA sequencing platforms, Roche 454 and Illumina MiSeq.

Credit: Howard Weiner, Brigham and Women's Hospital

"Our findings raise the possibility that by affecting the gut microbiome, one could come up with treatments for MS - treatments that affect the microbiome, and, in turn, the immune response," said Howard L. Weiner, MD, director of the Partners MS Center and co-director of the Ann Romney Center for Neurologic Disease at Brigham Women's Hospital, . "There are a number of ways that the microbiome could play a role in MS and this opens up a whole new world of looking at the disease in a way that it's never been looked at before."

Weiner and colleagues conducted their investigations using data and samples from subjects who are part of the CLIMB (Comprehensive Longitudinal Investigation of Multiple Sclerosis) study at Brigham and Women's Hospital. The team analyzed stool samples from 60 people with MS and 43 control subjects, performing gene sequencing to detect differences in the microbial communities of the subjects.

Samples from MS patients contained higher levels of certain bacterial species - including Methanobrevibacter and Akkermansia - and lower levels of others - such as Butyricimonas - when compared to healthy samples. Other studies have found that several of these microorganisms may drive inflammation or are associated with autoimmunity. Importantly, the team also found that microbial changes in the gut correlated with changes in the activity of genes that play a role in the immune system. The team also collected breath samples from subjects, finding that, as a result of increased levels of Methanobrevibacter, patients with MS had higher levels of methane in their breath samples.

The researchers also investigated the gut microbe communities of untreated MS patients, finding that MS disease-modifying therapy appeared to normalize the gut microbiomes of MS patients. The researchers note that further study will be required to determine the exact role that these microbes may be playing in the progression of disease and whether or not modifying the microbiome may be helpful in treating MS. They plan to continue to explore the connection between the gut and the immune system in a larger group of patients and follow changes over time to better understand disease progression and interventions.

"This work provides a window into how the gut can affect the immune system which can then affect the brain," said Weiner, who is also a professor of Neurology at Harvard Medical School. "Characterizing the gut microbiome in those with MS may provide new opportunities to diagnose MS and point us toward new interventions to help prevent disease development in those who are at risk."

###

Funding support for this work included grants from the NIH/NINDS, The National Multiple Sclerosis Society and from The Harvard Digestive Disease Center.

Paper cited: Jangi S et al. "Alterations of the human gut microbiome in multiple sclerosis." Nature Communications. DOI: 10.1038/NCOMMS12015

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 4.2 million annual patient visits and nearly 46,000 inpatient stays, is the largest birthing center in Massachusetts and employs nearly 16,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 3,000 researchers, including physician-investigators and renowned biomedical scientists and faculty supported by nearly $666 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative as well as the TIMI Study Group, one of the premier cardiovascular clinical trials groups. For more information, resources and to follow us on social media, please visit BWH's online newsroom.

Haley Bridger | EurekAlert!

Further reports about: MS immune system immunological disorders multiple sclerosis sclerosis

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>