Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell division research expected to lead to containment of cancer cells and regenerative medical treatments

08.04.2015

Researchers in Singapore, for the first time in the world, replicate the contractile ring’s structure by isolating a refined protein and placing it within a cell-imitation capsule.

All organisms grow and develop through the regenerative ability of cell division. An indispensable ability for all living beings, it can be said that life is defined by this process. Research into the nature of this process is of significant importance in biology and medical science.


Image: Waseda University

When organisms undergo cell division, what is known as a contractile ring is created in the interior wall of a cell membrane. As this ring contracts, the cell is pinched into multiple daughter cells.

Although research in molecular and cellular biology has gradually shed light on the proteins that form and control the contractile ring, there are many aspects of its self-organizational structure that remain a mystery.

Professor Shin’ichi Ishiwata (Graduate School of Advanced Science and Engineering) and Research Assistant Makito Miyazaki’s (Research Institute for Science and Engineering) research team at the Waseda Bioscience Research Institute in Singapore (WABIOS) are the first in the world to replicate the contractile ring’s structure by isolating a refined protein and placing it within a cell-imitation capsule.

Furthermore, the team has reached an understanding of the self-organizational structure of the ring and the minimum requirements and physical conditions of its contraction properties. This achievement is expected to play a great role in understanding the overall workings of cell division.

If cell division can be fully understood, it will become possible to control this process. This is expected to lead to medical treatments in various fields that can for example, prevent cancer cells from multiplying, and promote the propagation of healthy cells. It is also possible that this research can be utilized to create artificial cells with self-propagation abilities.

The details of this research were published in the online English science magazine “Nature Cell Biology” on March 23.


Associated links
Waseda University article

Waseda University | Fraunhofer Research News
Further information:
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

How Obesity Promotes Breast Cancer

20.10.2017 | Life Sciences

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>