Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell division research expected to lead to containment of cancer cells and regenerative medical treatments


Researchers in Singapore, for the first time in the world, replicate the contractile ring’s structure by isolating a refined protein and placing it within a cell-imitation capsule.

All organisms grow and develop through the regenerative ability of cell division. An indispensable ability for all living beings, it can be said that life is defined by this process. Research into the nature of this process is of significant importance in biology and medical science.

Image: Waseda University

When organisms undergo cell division, what is known as a contractile ring is created in the interior wall of a cell membrane. As this ring contracts, the cell is pinched into multiple daughter cells.

Although research in molecular and cellular biology has gradually shed light on the proteins that form and control the contractile ring, there are many aspects of its self-organizational structure that remain a mystery.

Professor Shin’ichi Ishiwata (Graduate School of Advanced Science and Engineering) and Research Assistant Makito Miyazaki’s (Research Institute for Science and Engineering) research team at the Waseda Bioscience Research Institute in Singapore (WABIOS) are the first in the world to replicate the contractile ring’s structure by isolating a refined protein and placing it within a cell-imitation capsule.

Furthermore, the team has reached an understanding of the self-organizational structure of the ring and the minimum requirements and physical conditions of its contraction properties. This achievement is expected to play a great role in understanding the overall workings of cell division.

If cell division can be fully understood, it will become possible to control this process. This is expected to lead to medical treatments in various fields that can for example, prevent cancer cells from multiplying, and promote the propagation of healthy cells. It is also possible that this research can be utilized to create artificial cells with self-propagation abilities.

The details of this research were published in the online English science magazine “Nature Cell Biology” on March 23.

Associated links
Waseda University article

Waseda University | Fraunhofer Research News
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>