Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Camouflage apples

22.03.2017

On the long journey from the fruit plantation to the retailer's shelf, fruits can quickly perish. In particular, the refrigeration inside the cargo containers is not always guaranteed and existing methods for measuring the temperature are not sufficiently reliable. A sensor developed at Empa solves this problem. It looks like a piece of fruit and acts like a piece of fruit – but is actually a spy.

Mangos, bananas and oranges have usually travelled long distances by the time they reach our shops. They are picked, packaged, refrigerated, packed in refrigerated containers, shipped, stored and finally laid out on display. However, not all the cargo makes it safely to its destination. Although fruit is inspected regularly, some of it is damaged or may even perish during the journey.


Empa's artificial fruit sensor – here in the Braeburn version.

Empa


Up to now, fruit has been sliced open and a sensor placed inside. The piece of fruit is then stuck back together temporarily. However, this distorts the results as the fruit is damaged.

Empa

This is because monitoring still has significant scope for improvement. Although sensors measure the air temperature in the freight container, it is the core temperature of the individual fruit that is decisive for the quality of the fruit. However up to now, it has only been possible to measure this "invasively", i.e. by inserting a sensor through the skin and into the centre.

And even this process has drawbacks. To carry out the measurement, the technician usually takes a piece of fruit from a cardboard box in the front row of pallets in the container, which in turn distorts the result. Fruit that is closer to the outside of the transport container is better refrigerated than fruit on the inside.

Sometimes whole container loads have to be destroyed because the temperatures on the inside of the container did not meet the prescribed guidelines. The USA and China, in particular, are extremely strict regarding the importation of fruit and vegetables. If the cargo has not been stored for three weeks at a certain minimum temperature, it is not authorised for sale in the country.

Not only does refrigeration serve to maintain the freshness and quality of the fruit, it also kills any larvae, such as moth larvae, which can nest in the fruit. It is therefore essential to prove that the refrigeration has actually penetrated all the fruit in the whole consignment for the required period of time.

The sensor travels with the fruit

In order to guarantee and monitor the temperature within the fruit, researchers at Empa have now developed an artificial fruit sensor. It is the same shape and size as the relevant fruit and also simulates its composition, and can be packed in with the real fruit and travel with it. On arrival at the destination, the data from the sensor can be analysed relatively quickly and easily. From this, the researchers hope to gain information about the temperature during transportation.

This is important information, primarily for insurance reasons: if a delivery does not meet the quality requirements, the sensor can be used to establish the point in the storage and transport chain at which something went wrong. Initial results are certainly very promising: "We analysed the sensors in the Empa refrigeration chamber in detail and all the tests were successful," explains Project Manager Thijs Defraeye from the Laboratory for Multiscale Studies in Building Physics. Field tests are currently under way at Agroscope in Wädenswil.

An artificial fruit sensor for Braeburn and Jonagold apples

However, the same sensor does not work for all fruits, as Defraeye explains. "We are developing separate sensors for each type of fruit, and even for different varieties." There are currently separate sensors for the Braeburn and Jonagold apple varieties, the Kent mango, oranges and the classic Cavendish banana. In order to simulate the characteristics of the individual types of fruit, the fruit is X-rayed, and a computer algorithm creates the average shape and texture of the fruit. From the literature or based on their own measurements, the researchers then determine the exact composition of the fruit's flesh (usually a combination of water, air and sugar) and simulate this in exactly the same ratio in the laboratory, although not with the original ingredients, instead using a mixture of water, carbohydrates and polystyrene.

This mixture is used to fill the fruit-shaped sensor mould. The mould is produced on a 3D printer. The researchers place the actual sensor inside the artificial fruit, where it records the data, including the core temperature of the fruit. Existing measuring devices on container walls only provide the air temperature, but this is not sufficiently reliable because the fruit can still be too warm on the inside. Although such fruit core simulators already exist in the field of research, they are not yet sufficiently accurate, explains Defraeye. One such example that has been used is balls filled with water with a sensor inside. "We have conducted comparative tests," says the researcher. "And our filling provided much more accurate data and simulated the behaviour of a real piece of fruit much more reliably at different temperatures."

Not (yet) wireless

Initial field tests on the sensors are currently under way and the researchers are now looking for potential industrial partners to manufacture the fruit spies. The investment is certainly likely to be worthwhile. It is estimated that the cost of such a sensor is less than CHF 50. The data would only have to be analysed if something was wrong with the delivered goods. This would then make it possible to efficiently establish where in the process an error had occurred.

Another desirable feature would be to be able to receive the data from the cargo container live and in real time, so that appropriate countermeasures could be taken in the event of abnormal data – thereby potentially saving the fruit cargo. That would require a wireless or Bluetooth connection. "However, our current fruit sensor cannot do that yet. And the price of the product would, of course, go up," says Defraeye. But the profits for the companies would probably also go up if the fruit sensors enabled them to supply more goods in perfect condition.

Weitere Informationen:

http://www.empa.ch/web/s604/fruit-sensor

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>