Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain Research: Millimeter-precise mapping of entrained brain oscillations


Brain Research: Tübingen neuroscientists perform millimeter-precise mapping of entrained brain oscillations during transcranial alternating-current stimulation

Transcranial electrical stimulation has been used for many years in the treatment of neurological and psychiatric disorders, such as depression, epilepsy or stroke. However, the exact mechanisms underlying stimulation effects are largely unknown.

Stimulation artifacts impeded exact assessment of neuromagnetic activity, particularly when the applied currents alternated their polarity. Scientists in Tübingen, Germany, have now introduced a novel stimulation method during whole-head magnetoencephalography (MEG) that allows millimeter precise mapping of entrained brain oscillations during transcranial alternating current stimulation (tACS). The new method promises to elucidate the underlying mechanisms of tACS and to improve stimulation strategies in the context of clinical applications.

The impact of electric currents on the human brain has been known for centuries and is increasingly used in the treatment of various diseases, such as severe depression, stroke, epilepsy, Parkinson's disease or chronic pain. Particularly the application of weak electric currents through two or more scalp electrodes known as transcranial DC or AC stimulation (tDCS/tACS) was increasingly investigated in their clinical efficacy and applicability.

However, the exact underlying mechanisms of tDCS and tACS are largely unknown as stimulation artifacts impeded assessment of physiological brain activity. Only in 2013, scientists at the University of Tübingen, Germany, managed in collaboration with the National Institutes of Health (NIH), USA, to assess millisecond-to-millisecond neuromagnetic activity while the brain of a human subjects underwent transcranial DC stimulation (Soekadar et al. 2013, Nature Communications).

Despite this success that allows for investigating the immediate effects of tDCS on brain oscillations (Garcia-Cossio et al. 2015, NeuroImage), artifact-free reconstruction of brain activity during AC stimulation remained unfeasible. It is assumed that tACS exerts its effect by synchronizing the phase of brain oscillations to the stimulation signal. During such tACS-induced entrainment of brain oscillations, stimulation artifacts could not be reliably differentiated from physiological neuromagnetic brain activity.

In their most recent study published today in NeuroImage (Witkowski et al. 2015), the same group has now succeeded to precisely map tACS-entrained brain oscillations using of a novel stimulation method allowing for reliable differentiation of neuromagnetic brain rhythms and tACS-related stimulation artifacts. The authors report that amplitude modulation of AC currents applied at frequencies beyond the physiological range of brain oscillations (>150Hz) avoided contamination of physiological frequency bands while such stimulation exerted a distinct entrainment effect at the modulation frequency.

Using this method enabled the scientists to precisely identify brain areas influenced by the stimulation including areas immediately underneath and in proximity of the stimulation electrodes. The researchers hope that the new approach will now help to elucidate the underlying mechanisms of tACS and other stimulation paradigms and improve its clinical efficacy.

Particularly "to adapt the stimulation to the individual anatomy and specific neurophysiological effects" are important perspectives of the new method according to Dr. Surjo R. Soekadar, head of the working group Applied Neurotechnology at the University Hospital Tübingen. "As a next step, it is conceivable that the stimulation will be adapted to the individual brain ac-tivity in real time. Such closed-loop stimulation promises to provide better control of the stimulation effects than classical stimulation protocols", adds Matthias Witkowski, lead author of the study.


Surjo R. Soekadar, MD
University of Tübingen
Department for Psychiatry and Psychotherapy & Institute of Medical Psy-chology and Behavioral Neurobiology
Applied Neurotechnology Lab
phone: +49 7071 29-82624


Witkowski M, Cossio EG, Chander BS, Braun C, Birbaumer N, Robinson SE, Soekadar SR. Mapping entrained brain oscillations during transcra-nial alternating current stimulation (tACS). Neuroimage. 2015 (in press). pii: S1053-8119(15)00934-9. doi: 10.1016/j.neuroimage.2015.10.024.

Garcia-Cossio E, Witkowski M, Robinson SE, Cohen LG, Birbaumer N, Soekadar SR. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. Neuroimage. 2015 (in press). pii: S1053-8119(15)00891-5. doi: 10.1016/j.neuroimage.2015.09.068.

Soekadar SR, Witkowski M, Cossio EG, Birbaumer N, Robinson SE, Cohen LG. In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun. 2013;4:2032. doi: 10.1038/ncomms3032.

Dr. Ellen Katz | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Brain Research NeuroImage Neurotechnology STROKE electrodes human brain oscillations

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>