Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Research: Millimeter-precise mapping of entrained brain oscillations

22.10.2015

Brain Research: Tübingen neuroscientists perform millimeter-precise mapping of entrained brain oscillations during transcranial alternating-current stimulation

Transcranial electrical stimulation has been used for many years in the treatment of neurological and psychiatric disorders, such as depression, epilepsy or stroke. However, the exact mechanisms underlying stimulation effects are largely unknown.

Stimulation artifacts impeded exact assessment of neuromagnetic activity, particularly when the applied currents alternated their polarity. Scientists in Tübingen, Germany, have now introduced a novel stimulation method during whole-head magnetoencephalography (MEG) that allows millimeter precise mapping of entrained brain oscillations during transcranial alternating current stimulation (tACS). The new method promises to elucidate the underlying mechanisms of tACS and to improve stimulation strategies in the context of clinical applications.

The impact of electric currents on the human brain has been known for centuries and is increasingly used in the treatment of various diseases, such as severe depression, stroke, epilepsy, Parkinson's disease or chronic pain. Particularly the application of weak electric currents through two or more scalp electrodes known as transcranial DC or AC stimulation (tDCS/tACS) was increasingly investigated in their clinical efficacy and applicability.

However, the exact underlying mechanisms of tDCS and tACS are largely unknown as stimulation artifacts impeded assessment of physiological brain activity. Only in 2013, scientists at the University of Tübingen, Germany, managed in collaboration with the National Institutes of Health (NIH), USA, to assess millisecond-to-millisecond neuromagnetic activity while the brain of a human subjects underwent transcranial DC stimulation (Soekadar et al. 2013, Nature Communications).

Despite this success that allows for investigating the immediate effects of tDCS on brain oscillations (Garcia-Cossio et al. 2015, NeuroImage), artifact-free reconstruction of brain activity during AC stimulation remained unfeasible. It is assumed that tACS exerts its effect by synchronizing the phase of brain oscillations to the stimulation signal. During such tACS-induced entrainment of brain oscillations, stimulation artifacts could not be reliably differentiated from physiological neuromagnetic brain activity.

In their most recent study published today in NeuroImage (Witkowski et al. 2015), the same group has now succeeded to precisely map tACS-entrained brain oscillations using of a novel stimulation method allowing for reliable differentiation of neuromagnetic brain rhythms and tACS-related stimulation artifacts. The authors report that amplitude modulation of AC currents applied at frequencies beyond the physiological range of brain oscillations (>150Hz) avoided contamination of physiological frequency bands while such stimulation exerted a distinct entrainment effect at the modulation frequency.

Using this method enabled the scientists to precisely identify brain areas influenced by the stimulation including areas immediately underneath and in proximity of the stimulation electrodes. The researchers hope that the new approach will now help to elucidate the underlying mechanisms of tACS and other stimulation paradigms and improve its clinical efficacy.

Particularly "to adapt the stimulation to the individual anatomy and specific neurophysiological effects" are important perspectives of the new method according to Dr. Surjo R. Soekadar, head of the working group Applied Neurotechnology at the University Hospital Tübingen. "As a next step, it is conceivable that the stimulation will be adapted to the individual brain ac-tivity in real time. Such closed-loop stimulation promises to provide better control of the stimulation effects than classical stimulation protocols", adds Matthias Witkowski, lead author of the study.

Contact:

Surjo R. Soekadar, MD
University of Tübingen
Department for Psychiatry and Psychotherapy & Institute of Medical Psy-chology and Behavioral Neurobiology
Applied Neurotechnology Lab
surjo.soekadar@uni-tuebingen.de
phone: +49 7071 29-82624

Publications:

Witkowski M, Cossio EG, Chander BS, Braun C, Birbaumer N, Robinson SE, Soekadar SR. Mapping entrained brain oscillations during transcra-nial alternating current stimulation (tACS). Neuroimage. 2015 (in press). pii: S1053-8119(15)00934-9. doi: 10.1016/j.neuroimage.2015.10.024.

Garcia-Cossio E, Witkowski M, Robinson SE, Cohen LG, Birbaumer N, Soekadar SR. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. Neuroimage. 2015 (in press). pii: S1053-8119(15)00891-5. doi: 10.1016/j.neuroimage.2015.09.068.

Soekadar SR, Witkowski M, Cossio EG, Birbaumer N, Robinson SE, Cohen LG. In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun. 2013;4:2032. doi: 10.1038/ncomms3032.

Dr. Ellen Katz | idw - Informationsdienst Wissenschaft
Further information:
http://www.medizin.uni-tuebingen.de/

Further reports about: Brain Research NeuroImage Neurotechnology STROKE electrodes human brain oscillations

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>