Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Research: Millimeter-precise mapping of entrained brain oscillations

22.10.2015

Brain Research: Tübingen neuroscientists perform millimeter-precise mapping of entrained brain oscillations during transcranial alternating-current stimulation

Transcranial electrical stimulation has been used for many years in the treatment of neurological and psychiatric disorders, such as depression, epilepsy or stroke. However, the exact mechanisms underlying stimulation effects are largely unknown.

Stimulation artifacts impeded exact assessment of neuromagnetic activity, particularly when the applied currents alternated their polarity. Scientists in Tübingen, Germany, have now introduced a novel stimulation method during whole-head magnetoencephalography (MEG) that allows millimeter precise mapping of entrained brain oscillations during transcranial alternating current stimulation (tACS). The new method promises to elucidate the underlying mechanisms of tACS and to improve stimulation strategies in the context of clinical applications.

The impact of electric currents on the human brain has been known for centuries and is increasingly used in the treatment of various diseases, such as severe depression, stroke, epilepsy, Parkinson's disease or chronic pain. Particularly the application of weak electric currents through two or more scalp electrodes known as transcranial DC or AC stimulation (tDCS/tACS) was increasingly investigated in their clinical efficacy and applicability.

However, the exact underlying mechanisms of tDCS and tACS are largely unknown as stimulation artifacts impeded assessment of physiological brain activity. Only in 2013, scientists at the University of Tübingen, Germany, managed in collaboration with the National Institutes of Health (NIH), USA, to assess millisecond-to-millisecond neuromagnetic activity while the brain of a human subjects underwent transcranial DC stimulation (Soekadar et al. 2013, Nature Communications).

Despite this success that allows for investigating the immediate effects of tDCS on brain oscillations (Garcia-Cossio et al. 2015, NeuroImage), artifact-free reconstruction of brain activity during AC stimulation remained unfeasible. It is assumed that tACS exerts its effect by synchronizing the phase of brain oscillations to the stimulation signal. During such tACS-induced entrainment of brain oscillations, stimulation artifacts could not be reliably differentiated from physiological neuromagnetic brain activity.

In their most recent study published today in NeuroImage (Witkowski et al. 2015), the same group has now succeeded to precisely map tACS-entrained brain oscillations using of a novel stimulation method allowing for reliable differentiation of neuromagnetic brain rhythms and tACS-related stimulation artifacts. The authors report that amplitude modulation of AC currents applied at frequencies beyond the physiological range of brain oscillations (>150Hz) avoided contamination of physiological frequency bands while such stimulation exerted a distinct entrainment effect at the modulation frequency.

Using this method enabled the scientists to precisely identify brain areas influenced by the stimulation including areas immediately underneath and in proximity of the stimulation electrodes. The researchers hope that the new approach will now help to elucidate the underlying mechanisms of tACS and other stimulation paradigms and improve its clinical efficacy.

Particularly "to adapt the stimulation to the individual anatomy and specific neurophysiological effects" are important perspectives of the new method according to Dr. Surjo R. Soekadar, head of the working group Applied Neurotechnology at the University Hospital Tübingen. "As a next step, it is conceivable that the stimulation will be adapted to the individual brain ac-tivity in real time. Such closed-loop stimulation promises to provide better control of the stimulation effects than classical stimulation protocols", adds Matthias Witkowski, lead author of the study.

Contact:

Surjo R. Soekadar, MD
University of Tübingen
Department for Psychiatry and Psychotherapy & Institute of Medical Psy-chology and Behavioral Neurobiology
Applied Neurotechnology Lab
surjo.soekadar@uni-tuebingen.de
phone: +49 7071 29-82624

Publications:

Witkowski M, Cossio EG, Chander BS, Braun C, Birbaumer N, Robinson SE, Soekadar SR. Mapping entrained brain oscillations during transcra-nial alternating current stimulation (tACS). Neuroimage. 2015 (in press). pii: S1053-8119(15)00934-9. doi: 10.1016/j.neuroimage.2015.10.024.

Garcia-Cossio E, Witkowski M, Robinson SE, Cohen LG, Birbaumer N, Soekadar SR. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. Neuroimage. 2015 (in press). pii: S1053-8119(15)00891-5. doi: 10.1016/j.neuroimage.2015.09.068.

Soekadar SR, Witkowski M, Cossio EG, Birbaumer N, Robinson SE, Cohen LG. In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun. 2013;4:2032. doi: 10.1038/ncomms3032.

Dr. Ellen Katz | idw - Informationsdienst Wissenschaft
Further information:
http://www.medizin.uni-tuebingen.de/

Further reports about: Brain Research NeuroImage Neurotechnology STROKE electrodes human brain oscillations

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>